Goto

Collaborating Authors

 Kästner, Christian


From Hazard Identification to Controller Design: Proactive and LLM-Supported Safety Engineering for ML-Powered Systems

arXiv.org Artificial Intelligence

Machine learning (ML) components are increasingly integrated into software products, yet their complexity and inherent uncertainty often lead to unintended and hazardous consequences, both for individuals and society at large. Despite these risks, practitioners seldom adopt proactive approaches to anticipate and mitigate hazards before they occur. Traditional safety engineering approaches, such as Failure Mode and Effects Analysis (FMEA) and System Theoretic Process Analysis (STPA), offer systematic frameworks for early risk identification but are rarely adopted. This position paper advocates for integrating hazard analysis into the development of any ML-powered software product and calls for greater support to make this process accessible to developers. By using large language models (LLMs) to partially automate a modified STPA process with human oversight at critical steps, we expect to address two key challenges: the heavy dependency on highly experienced safety engineering experts, and the time-consuming, labor-intensive nature of traditional hazard analysis, which often impedes its integration into real-world development workflows. We illustrate our approach with a running example, demonstrating that many seemingly unanticipated issues can, in fact, be anticipated.


Beyond Accuracy, SHAP, and Anchors -- On the difficulty of designing effective end-user explanations

arXiv.org Artificial Intelligence

Modern machine learning produces models that are impossible for users or developers to fully understand -- raising concerns about trust, oversight and human dignity. Transparency and explainability methods aim to provide some help in understanding models, but it remains challenging for developers to design explanations that are understandable to target users and effective for their purpose. Emerging guidelines and regulations set goals but may not provide effective actionable guidance to developers. In a controlled experiment with 124 participants, we investigate whether and how specific forms of policy guidance help developers design explanations for an ML-powered screening tool for diabetic retinopathy. Contrary to our expectations, we found that participants across the board struggled to produce quality explanations, comply with the provided policy requirements for explainability, and provide evidence of compliance. We posit that participant noncompliance is in part due to a failure to imagine and anticipate the needs of their audience, particularly non-technical stakeholders. Drawing on cognitive process theory and the sociological imagination to contextualize participants' failure, we recommend educational interventions.


FairSense: Long-Term Fairness Analysis of ML-Enabled Systems

arXiv.org Artificial Intelligence

Algorithmic fairness of machine learning (ML) models has raised significant concern in the recent years. Many testing, verification, and bias mitigation techniques have been proposed to identify and reduce fairness issues in ML models. The existing methods are model-centric and designed to detect fairness issues under static settings. However, many ML-enabled systems operate in a dynamic environment where the predictive decisions made by the system impact the environment, which in turn affects future decision-making. Such a self-reinforcing feedback loop can cause fairness violations in the long term, even if the immediate outcomes are fair. In this paper, we propose a simulation-based framework called FairSense to detect and analyze long-term unfairness in ML-enabled systems. Given a fairness requirement, FairSense performs Monte-Carlo simulation to enumerate evolution traces for each system configuration. Then, FairSense performs sensitivity analysis on the space of possible configurations to understand the impact of design options and environmental factors on the long-term fairness of the system. We demonstrate FairSense's potential utility through three real-world case studies: Loan lending, opioids risk scoring, and predictive policing.


Beyond the Comfort Zone: Emerging Solutions to Overcome Challenges in Integrating LLMs into Software Products

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are increasingly embedded into software products across diverse industries, enhancing user experiences, but at the same time introducing numerous challenges for developers. Unique characteristics of LLMs force developers, who are accustomed to traditional software development and evaluation, out of their comfort zones as the LLM components shatter standard assumptions about software systems. This study explores the emerging solutions that software developers are adopting to navigate the encountered challenges. Leveraging a mixed-method research, including 26 interviews and a survey with 332 responses, the study identifies 19 emerging solutions regarding quality assurance that practitioners across several product teams at Microsoft are exploring. The findings provide valuable insights that can guide the development and evaluation of LLM-based products more broadly in the face of these challenges.


(Why) Is My Prompt Getting Worse? Rethinking Regression Testing for Evolving LLM APIs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are increasingly integrated into software applications. Downstream application developers often access LLMs through APIs provided as a service. However, LLM APIs are often updated silently and scheduled to be deprecated, forcing users to continuously adapt to evolving models. This can cause performance regression and affect prompt design choices, as evidenced by our case study on toxicity detection. Based on our case study, we emphasize the need for and re-examine the concept of regression testing for evolving LLM APIs. We argue that regression testing LLMs requires fundamental changes to traditional testing approaches, due to different correctness notions, prompting brittleness, and non-determinism in LLM APIs.


Beyond Testers' Biases: Guiding Model Testing with Knowledge Bases using LLMs

arXiv.org Artificial Intelligence

Current model testing work has mostly focused on creating test cases. Identifying what to test is a step that is largely ignored and poorly supported. We propose Weaver, an interactive tool that supports requirements elicitation for guiding model testing. Weaver uses large language models to generate knowledge bases and recommends concepts from them interactively, allowing testers to elicit requirements for further testing. Weaver provides rich external knowledge to testers and encourages testers to systematically explore diverse concepts beyond their own biases. In a user study, we show that both NLP experts and non-experts identified more, as well as more diverse concepts worth testing when using Weaver. Collectively, they found more than 200 failing test cases for stance detection with zero-shot ChatGPT. Our case studies further show that Weaver can help practitioners test models in real-world settings, where developers define more nuanced application scenarios (e.g., code understanding and transcript summarization) using LLMs.


A Meta-Summary of Challenges in Building Products with ML Components -- Collecting Experiences from 4758+ Practitioners

arXiv.org Artificial Intelligence

Incorporating machine learning (ML) components into software products raises new software-engineering challenges and exacerbates existing challenges. Many researchers have invested significant effort in understanding the challenges of industry practitioners working on building products with ML components, through interviews and surveys with practitioners. With the intention to aggregate and present their collective findings, we conduct a meta-summary study: We collect 50 relevant papers that together interacted with over 4758 practitioners using guidelines for systematic literature reviews. We then collected, grouped, and organized the over 500 mentions of challenges within those papers. We highlight the most commonly reported challenges and hope this meta-summary will be a useful resource for the research community to prioritize research and education in this field.


MLTEing Models: Negotiating, Evaluating, and Documenting Model and System Qualities

arXiv.org Artificial Intelligence

Many organizations seek to ensure that machine learning (ML) and artificial intelligence (AI) systems work as intended in production but currently do not have a cohesive methodology in place to do so. To fill this gap, we propose MLTE (Machine Learning Test and Evaluation, colloquially referred to as "melt"), a framework and implementation to evaluate ML models and systems. The framework compiles state-of-the-art evaluation techniques into an organizational process for interdisciplinary teams, including model developers, software engineers, system owners, and other stakeholders. MLTE tooling supports this process by providing a domain-specific language that teams can use to express model requirements, an infrastructure to define, generate, and collect ML evaluation metrics, and the means to communicate results.


Capabilities for Better ML Engineering

arXiv.org Artificial Intelligence

In spite of machine learning's rapid growth, its engineering support is scattered in many forms, and tends to favor certain engineering stages, stakeholders, and evaluation preferences. We envision a capability-based framework, which uses fine-grained specifications for ML model behaviors to unite existing efforts towards better ML engineering. We use concrete scenarios (model design, debugging, and maintenance) to articulate capabilities' broad applications across various different dimensions, and their impact on building safer, more generalizable and more trustworthy models that reflect human needs. Through preliminary experiments, we show capabilities' potential for reflecting model generalizability, which can provide guidance for ML engineering process. We discuss challenges and opportunities for capabilities' integration into ML engineering.


Aspirations and Practice of Model Documentation: Moving the Needle with Nudging and Traceability

arXiv.org Artificial Intelligence

The documentation practice for machine-learned (ML) models often falls short of established practices for traditional software, which impedes model accountability and inadvertently abets inappropriate or misuse of models. Recently, model cards, a proposal for model documentation, have attracted notable attention, but their impact on the actual practice is unclear. In this work, we systematically study the model documentation in the field and investigate how to encourage more responsible and accountable documentation practice. Our analysis of publicly available model cards reveals a substantial gap between the proposal and the practice. We then design a tool named DocML aiming to (1) nudge the data scientists to comply with the model cards proposal during the model development, especially the sections related to ethics, and (2) assess and manage the documentation quality. A lab study reveals the benefit of our tool towards long-term documentation quality and accountability.