Jung, Christopher
Orthogonal Causal Calibration
Whitehouse, Justin, Jung, Christopher, Syrgkanis, Vasilis, Wilder, Bryan, Wu, Zhiwei Steven
Estimates of causal parameters such as conditional average treatment effects and conditional quantile treatment effects play an important role in real-world decision making. Given this importance, one should ensure these estimators are calibrated. While there is a rich literature on calibrating estimators of non-causal parameters, very few methods have been derived for calibrating estimators of causal parameters, or more generally estimators of quantities involving nuisance parameters. In this work, we provide a general framework for calibrating predictors involving nuisance estimation. We consider a notion of calibration defined with respect to an arbitrary, nuisance-dependent loss $\ell$, under which we say an estimator $\theta$ is calibrated if its predictions cannot be changed on any level set to decrease loss. We prove generic upper bounds on the calibration error of any causal parameter estimate $\theta$ with respect to any loss $\ell$ using a concept called Neyman Orthogonality. Our bounds involve two decoupled terms - one measuring the error in estimating the unknown nuisance parameters, and the other representing the calibration error in a hypothetical world where the learned nuisance estimates were true. We use our bound to analyze the convergence of two sample splitting algorithms for causal calibration. One algorithm, which applies to universally orthogonalizable loss functions, transforms the data into generalized pseudo-outcomes and applies an off-the-shelf calibration procedure. The other algorithm, which applies to conditionally orthogonalizable loss functions, extends the classical uniform mass binning algorithm to include nuisance estimation. Our results are exceedingly general, showing that essentially any existing calibration algorithm can be used in causal settings, with additional loss only arising from errors in nuisance estimation.
Taking a Moment for Distributional Robustness
Hastings, Jabari, Jung, Christopher, Peale, Charlotte, Syrgkanis, Vasilis
A rich line of recent work has studied distributionally robust learning approaches that seek to learn a hypothesis that performs well, in the worst-case, on many different distributions over a population. We argue that although the most common approaches seek to minimize the worst-case loss over distributions, a more reasonable goal is to minimize the worst-case distance to the true conditional expectation of labels given each covariate. Focusing on the minmax loss objective can dramatically fail to output a solution minimizing the distance to the true conditional expectation when certain distributions contain high levels of label noise. We introduce a new min-max objective based on what is known as the adversarial moment violation and show that minimizing this objective is equivalent to minimizing the worst-case $\ell_2$-distance to the true conditional expectation if we take the adversary's strategy space to be sufficiently rich. Previous work has suggested minimizing the maximum regret over the worst-case distribution as a way to circumvent issues arising from differential noise levels. We show that in the case of square loss, minimizing the worst-case regret is also equivalent to minimizing the worst-case $\ell_2$-distance to the true conditional expectation. Although their objective and our objective both minimize the worst-case distance to the true conditional expectation, we show that our approach provides large empirical savings in computational cost in terms of the number of groups, while providing the same noise-oblivious worst-distribution guarantee as the minimax regret approach, thus making positive progress on an open question posed by Agarwal and Zhang (2022).
Oracle Efficient Online Multicalibration and Omniprediction
Garg, Sumegha, Jung, Christopher, Reingold, Omer, Roth, Aaron
A recent line of work has shown a surprising connection between multicalibration, a multi-group fairness notion, and omniprediction, a learning paradigm that provides simultaneous loss minimization guarantees for a large family of loss functions. Prior work studies omniprediction in the batch setting. We initiate the study of omniprediction in the online adversarial setting. Although there exist algorithms for obtaining notions of multicalibration in the online adversarial setting, unlike batch algorithms, they work only for small finite classes of benchmark functions $F$, because they require enumerating every function $f \in F$ at every round. In contrast, omniprediction is most interesting for learning theoretic hypothesis classes $F$, which are generally continuously large. We develop a new online multicalibration algorithm that is well defined for infinite benchmark classes $F$, and is oracle efficient (i.e. for any class $F$, the algorithm has the form of an efficient reduction to a no-regret learning algorithm for $F$). The result is the first efficient online omnipredictor -- an oracle efficient prediction algorithm that can be used to simultaneously obtain no regret guarantees to all Lipschitz convex loss functions. For the class $F$ of linear functions, we show how to make our algorithm efficient in the worst case. Also, we show upper and lower bounds on the extent to which our rates can be improved: our oracle efficient algorithm actually promises a stronger guarantee called swap-omniprediction, and we prove a lower bound showing that obtaining $O(\sqrt{T})$ bounds for swap-omniprediction is impossible in the online setting. On the other hand, we give a (non-oracle efficient) algorithm which can obtain the optimal $O(\sqrt{T})$ omniprediction bounds without going through multicalibration, giving an information theoretic separation between these two solution concepts.
Distributionally Robust Data Join
Awasthi, Pranjal, Jung, Christopher, Morgenstern, Jamie
Suppose we are given two datasets: a labeled dataset and unlabeled dataset which also has additional auxiliary features not present in the first dataset. What is the most principled way to use these datasets together to construct a predictor? The answer should depend upon whether these datasets are generated by the same or different distributions over their mutual feature sets, and how similar the test distribution will be to either of those distributions. In many applications, the two datasets will likely follow different distributions, but both may be close to the test distribution. We introduce the problem of building a predictor which minimizes the maximum loss over all probability distributions over the original features, auxiliary features, and binary labels, whose Wasserstein distance is $r_1$ away from the empirical distribution over the labeled dataset and $r_2$ away from that of the unlabeled dataset. This can be thought of as a generalization of distributionally robust optimization (DRO), which allows for two data sources, one of which is unlabeled and may contain auxiliary features.
Online Multivalid Learning: Means, Moments, and Prediction Intervals
Gupta, Varun, Jung, Christopher, Noarov, Georgy, Pai, Mallesh M., Roth, Aaron
We present a general, efficient technique for providing contextual predictions that are "multivalid" in various senses, against an online sequence of adversarially chosen examples $(x,y)$. This means that the resulting estimates correctly predict various statistics of the labels $y$ not just marginally -- as averaged over the sequence of examples -- but also conditionally on $x \in G$ for any $G$ belonging to an arbitrary intersecting collection of groups $\mathcal{G}$. We provide three instantiations of this framework. The first is mean prediction, which corresponds to an online algorithm satisfying the notion of multicalibration from Hebert-Johnson et al. The second is variance and higher moment prediction, which corresponds to an online algorithm satisfying the notion of mean-conditioned moment multicalibration from Jung et al. Finally, we define a new notion of prediction interval multivalidity, and give an algorithm for finding prediction intervals which satisfy it. Because our algorithms handle adversarially chosen examples, they can equally well be used to predict statistics of the residuals of arbitrary point prediction methods, giving rise to very general techniques for quantifying the uncertainty of predictions of black box algorithms, even in an online adversarial setting. When instantiated for prediction intervals, this solves a similar problem as conformal prediction, but in an adversarial environment and with multivalidity guarantees stronger than simple marginal coverage guarantees.
Moment Multicalibration for Uncertainty Estimation
Jung, Christopher, Lee, Changhwa, Pai, Mallesh M., Roth, Aaron, Vohra, Rakesh
We show how to achieve the notion of "multicalibration" from H\'ebert-Johnson et al. [2018] not just for means, but also for variances and other higher moments. Informally, it means that we can find regression functions which, given a data point, can make point predictions not just for the expectation of its label, but for higher moments of its label distribution as well-and those predictions match the true distribution quantities when averaged not just over the population as a whole, but also when averaged over an enormous number of finely defined subgroups. It yields a principled way to estimate the uncertainty of predictions on many different subgroups-and to diagnose potential sources of unfairness in the predictive power of features across subgroups. As an application, we show that our moment estimates can be used to derive marginal prediction intervals that are simultaneously valid as averaged over all of the (sufficiently large) subgroups for which moment multicalibration has been obtained.
A New Analysis of Differential Privacy's Generalization Guarantees
Jung, Christopher, Ligett, Katrina, Neel, Seth, Roth, Aaron, Sharifi-Malvajerdi, Saeed, Shenfeld, Moshe
We give a new proof of the "transfer theorem" underlying adaptive data analysis: that any mechanism for answering adaptively chosen statistical queries that is differentially private and sample-accurate is also accurate out-of-sample. Our new proof is elementary and gives structural insights that we expect will be useful elsewhere. We show: 1) that differential privacy ensures that the expectation of any query on the posterior distribution on datasets induced by the transcript of the interaction is close to its true value on the data distribution, and 2) sample accuracy on its own ensures that any query answer produced by the mechanism is close to its posterior expectation with high probability. This second claim follows from a thought experiment in which we imagine that the dataset is resampled from the posterior distribution after the mechanism has committed to its answers. The transfer theorem then follows by summing these two bounds, and in particular, avoids the "monitor argument" used to derive high probability bounds in prior work. An upshot of our new proof technique is that the concrete bounds we obtain are substantially better than the best previously known bounds, even though the improvements are in the constants, rather than the asymptotics (which are known to be tight). As we show, our new bounds outperform the naive "sample-splitting" baseline at dramatically smaller dataset sizes compared to the previous state of the art, bringing techniques from this literature closer to practicality.
A Center in Your Neighborhood: Fairness in Facility Location
Jung, Christopher, Kannan, Sampath, Lutz, Neil
When selecting locations for a set of facilities, standard clustering algorithms may place unfair burden on some individuals and neighborhoods. We formulate a fairness concept that takes local population densities into account. In particular, given $k$ facilities to locate and a population of size $n$, we define the "neighborhood radius" of an individual $i$ as the minimum radius of a ball centered at $i$ that contains at least $n/k$ individuals. Our objective is to ensure that each individual has a facility within at most a small constant factor of her neighborhood radius. We present several theoretical results: We show that optimizing this factor is NP-hard; we give an approximation algorithm that guarantees a factor of at most 2 in all metric spaces; and we prove matching lower bounds in some metric spaces. We apply a variant of this algorithm to real-world address data, showing that it is quite different from standard clustering algorithms and outperforms them on our objective function and balances the load between facilities more evenly.
Eliciting and Enforcing Subjective Individual Fairness
Jung, Christopher, Kearns, Michael, Neel, Seth, Roth, Aaron, Stapleton, Logan, Wu, Zhiwei Steven
We revisit the notion of individual fairness first proposed by Dwork et al. [2012], which asks that "similar individuals should be treated similarly". A primary difficulty with this definition is that it assumes a completely specified fairness metric for the task at hand. In contrast, we consider a framework for fairness elicitation, in which fairness is indirectly specified only via a sample of pairs of individuals who should be treated (approximately) equally on the task. We make no assumption that these pairs are consistent with any metric. We provide a provably convergent oracle-efficient algorithm for minimizing error subject to the fairness constraints, and prove generalization theorems for both accuracy and fairness. Since the constrained pairs could be elicited either from a panel of judges, or from particular individuals, our framework provides a means for algorithmically enforcing subjective notions of fairness. We report on preliminary findings of a behavioral study of subjective fairness using human-subject fairness constraints elicited on the COMPAS criminal recidivism dataset.
Online Learning with an Unknown Fairness Metric
Gillen, Stephen, Jung, Christopher, Kearns, Michael, Roth, Aaron
We consider the problem of online learning in the linear contextual bandits setting, but in which there are also strong individual fairness constraints governed by an unknown similarity metric. These constraints demand that we select similar actions or individuals with approximately equal probability DHPRZ12, which may be at odds with optimizing reward, thus modeling settings where profit and social policy are in tension. We assume we learn about an unknown Mahalanobis similarity metric from only weak feedback that identifies fairness violations, but does not quantify their extent. This is intended to represent the interventions of a regulator who "knows unfairness when he sees it" but nevertheless cannot enunciate a quantitative fairness metric over individuals. Our main result is an algorithm in the adversarial context setting that has a number of fairness violations that depends only logarithmically on T, while obtaining an optimal O(sqrt(T)) regret bound to the best fair policy.