Goto

Collaborating Authors

 Jiang, Meirui


Local Superior Soups: A Catalyst for Model Merging in Cross-Silo Federated Learning

arXiv.org Artificial Intelligence

Federated learning (FL) is a learning paradigm that enables collaborative training of models using decentralized data. Recently, the utilization of pre-trained weight initialization in FL has been demonstrated to effectively improve model performance. However, the evolving complexity of current pre-trained models, characterized by a substantial increase in parameters, markedly intensifies the challenges associated with communication rounds required for their adaptation to FL. To address these communication cost issues and increase the performance of pre-trained model adaptation in FL, we propose an innovative model interpolation-based local training technique called ``Local Superior Soups.'' Our method enhances local training across different clients, encouraging the exploration of a connected low-loss basin within a few communication rounds through regularized model interpolation. This approach acts as a catalyst for the seamless adaptation of pre-trained models in in FL. We demonstrated its effectiveness and efficiency across diverse widely-used FL datasets. Our code is available at \href{https://github.com/ubc-tea/Local-Superior-Soups}{https://github.com/ubc-tea/Local-Superior-Soups}.


Client-Level Differential Privacy via Adaptive Intermediary in Federated Medical Imaging

arXiv.org Artificial Intelligence

Despite recent progress in enhancing the privacy of federated learning (FL) via differential privacy (DP), the trade-off of DP between privacy protection and performance is still underexplored for real-world medical scenario. In this paper, we propose to optimize the trade-off under the context of client-level DP, which focuses on privacy during communications. However, FL for medical imaging involves typically much fewer participants (hospitals) than other domains (e.g., mobile devices), thus ensuring clients be differentially private is much more challenging. To tackle this problem, we propose an adaptive intermediary strategy to improve performance without harming privacy. Specifically, we theoretically find splitting clients into sub-clients, which serve as intermediaries between hospitals and the server, can mitigate the noises introduced by DP without harming privacy. Our proposed approach is empirically evaluated on both classification and segmentation tasks using two public datasets, and its effectiveness is demonstrated with significant performance improvements and comprehensive analytical studies.


FedSoup: Improving Generalization and Personalization in Federated Learning via Selective Model Interpolation

arXiv.org Artificial Intelligence

Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers such as hospitals and clinical research laboratories. However, recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts. Specifically, personalized FL methods have a tendency to overfit to local data, leading to a sharp valley in the local model and inhibiting its ability to generalize to out-of-distribution data. In this paper, we propose a novel federated model soup method (i.e., selective interpolation of model parameters) to optimize the trade-off between local and global performance. Specifically, during the federated training phase, each client maintains its own global model pool by monitoring the performance of the interpolated model between the local and global models. This allows us to alleviate overfitting and seek flat minima, which can significantly improve the model's generalization performance. We evaluate our method on retinal and pathological image classification tasks, and our proposed method achieves significant improvements for out-of-distribution generalization. Our code is available at https://github.com/ubc-tea/FedSoup.


Fair Federated Medical Image Segmentation via Client Contribution Estimation

arXiv.org Artificial Intelligence

How to ensure fairness is an important topic in federated learning (FL). Recent studies have investigated how to reward clients based on their contribution (collaboration fairness), and how to achieve uniformity of performance across clients (performance fairness). Despite achieving progress on either one, we argue that it is critical to consider them together, in order to engage and motivate more diverse clients joining FL to derive a high-quality global model. In this work, we propose a novel method to optimize both types of fairness simultaneously. Specifically, we propose to estimate client contribution in gradient and data space. In gradient space, we monitor the gradient direction differences of each client with respect to others. And in data space, we measure the prediction error on client data using an auxiliary model. Based on this contribution estimation, we propose a FL method, federated training via contribution estimation (FedCE), i.e., using estimation as global model aggregation weights. We have theoretically analyzed our method and empirically evaluated it on two real-world medical datasets. The effectiveness of our approach has been validated with significant performance improvements, better collaboration fairness, better performance fairness, and comprehensive analytical studies.


IOP-FL: Inside-Outside Personalization for Federated Medical Image Segmentation

arXiv.org Artificial Intelligence

Federated learning (FL) allows multiple medical institutions to collaboratively learn a global model without centralizing client data. It is difficult, if possible at all, for such a global model to commonly achieve optimal performance for each individual client, due to the heterogeneity of medical images from various scanners and patient demographics. This problem becomes even more significant when deploying the global model to unseen clients outside the FL with unseen distributions not presented during federated training. To optimize the prediction accuracy of each individual client for medical imaging tasks, we propose a novel unified framework for both \textit{Inside and Outside model Personalization in FL} (IOP-FL). Our inside personalization uses a lightweight gradient-based approach that exploits the local adapted model for each client, by accumulating both the global gradients for common knowledge and the local gradients for client-specific optimization. Moreover, and importantly, the obtained local personalized models and the global model can form a diverse and informative routing space to personalize an adapted model for outside FL clients. Hence, we design a new test-time routing scheme using the consistency loss with a shape constraint to dynamically incorporate the models, given the distribution information conveyed by the test data. Our extensive experimental results on two medical image segmentation tasks present significant improvements over SOTA methods on both inside and outside personalization, demonstrating the potential of our IOP-FL scheme for clinical practice.


UniFed: A Unified Framework for Federated Learning on Non-IID Image Features

arXiv.org Artificial Intelligence

How to tackle non-iid data is a crucial topic in federated learning. This challenging problem not only affects training process, but also harms performance of clients not participating in training. Existing literature mainly focuses on either side, yet still lacks a unified solution to handle these two types (internal and external) of clients in a joint way. In this work, we propose a unified framework to tackle the non-iid issues for internal and external clients together. Firstly, we propose to use client-specific batch normalization in either internal or external clients to alleviate feature distribution shifts incurred by non-iid data. Then we present theoretical analysis to demonstrate the benefits of client-specific batch normalization. Specifically, we show that our approach promotes convergence speed for federated training and yields lower generalization error bound for external clients. Furthermore, we use causal reasoning to form a causal view to explain the advantages of our framework. At last, we conduct extensive experiments on natural and medical images to evaluate our method, where our method achieves state-of-the-art performance, faster convergence, and shows good compatibility. We also performed comprehensive analytical studies on a real-world medical dataset to demonstrate the effectiveness.


Federated Learning Enables Big Data for Rare Cancer Boundary Detection

arXiv.org Artificial Intelligence

Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25, 256 MRI scans from 6, 314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing.


HarmoFL: Harmonizing Local and Global Drifts in Federated Learning on Heterogeneous Medical Images

arXiv.org Artificial Intelligence

Multiple medical institutions collaboratively training a model using federated learning (FL) has become a promising solution for maximizing the potential of data-driven models, yet the non-independent and identically distributed (non-iid) data in medical images is still an outstanding challenge in real-world practice. The feature heterogeneity caused by diverse scanners or protocols introduces a drift in the learning process, in both local (client) and global (server) optimizations, which harms the convergence as well as model performance. Many previous works have attempted to address the non-iid issue by tackling the drift locally or globally, but how to jointly solve the two essentially coupled drifts is still unclear. In this work, we concentrate on handling both local and global drifts and introduce a new harmonizing framework called HarmoFL. First, we propose to mitigate the local update drift by normalizing amplitudes of images transformed into the frequency domain to mimic a unified imaging setting, in order to generate a harmonized feature space across local clients. Second, based on harmonized features, we design a client weight perturbation guiding each local model to reach a flat optimum, where a neighborhood area of the local optimal solution has a uniformly low loss. Without any extra communication cost, the perturbation assists the global model to optimize towards a converged optimal solution by aggregating several local flat optima. We have theoretically analyzed the proposed method and empirically conducted extensive experiments on three medical image classification and segmentation tasks, showing that HarmoFL outperforms a set of recent state-of-the-art methods with promising convergence behavior. Code is available at https://github.com/med-air/HarmoFL.