Goto

Collaborating Authors

 Jha, Niraj K.


LinGen: Towards High-Resolution Minute-Length Text-to-Video Generation with Linear Computational Complexity

arXiv.org Artificial Intelligence

Text-to-video generation enhances content creation but is highly computationally intensive: The computational cost of Diffusion Transformers (DiTs) scales quadratically in the number of pixels. This makes minute-length video generation extremely expensive, limiting most existing models to generating videos of only 10-20 seconds length. We propose a Linear-complexity text-to-video Generation (LinGen) framework whose cost scales linearly in the number of pixels. For the first time, LinGen enables high-resolution minute-length video generation on a single GPU without compromising quality. It replaces the computationally-dominant and quadratic-complexity block, self-attention, with a linear-complexity block called MATE, which consists of an MA-branch and a TE-branch. The MA-branch targets short-to-long-range correlations, combining a bidirectional Mamba2 block with our token rearrangement method, Rotary Major Scan, and our review tokens developed for long video generation. The TE-branch is a novel TEmporal Swin Attention block that focuses on temporal correlations between adjacent tokens and medium-range tokens. The MATE block addresses the adjacency preservation issue of Mamba and improves the consistency of generated videos significantly. Experimental results show that LinGen outperforms DiT (with a 75.6% win rate) in video quality with up to 15$\times$ (11.5$\times$) FLOPs (latency) reduction. Furthermore, both automatic metrics and human evaluation demonstrate our LinGen-4B yields comparable video quality to state-of-the-art models (with a 50.5%, 52.1%, 49.1% win rate with respect to Gen-3, LumaLabs, and Kling, respectively). This paves the way to hour-length movie generation and real-time interactive video generation. We provide 68s video generation results and more examples in our project website: https://lineargen.github.io/.


Learning Interpretable Differentiable Logic Networks

arXiv.org Artificial Intelligence

The ubiquity of neural networks (NNs) in real-world applications, from healthcare to natural language processing, underscores their immense utility in capturing complex relationships within high-dimensional data. However, NNs come with notable disadvantages, such as their "black-box" nature, which hampers interpretability, as well as their tendency to overfit the training data. We introduce a novel method for learning interpretable differentiable logic networks (DLNs) that are architectures that employ multiple layers of binary logic operators. We train these networks by softening and differentiating their discrete components, e.g., through binarization of inputs, binary logic operations, and connections between neurons. This approach enables the use of gradient-based learning methods. Experimental results on twenty classification tasks indicate that differentiable logic networks can achieve accuracies comparable to or exceeding that of traditional NNs. Equally importantly, these networks offer the advantage of interpretability. Moreover, their relatively simple structure results in the number of logic gate-level operations during inference being up to a thousand times smaller than NNs, making them suitable for deployment on edge devices.


METRIK: Measurement-Efficient Randomized Controlled Trials using Transformers with Input Masking

arXiv.org Artificial Intelligence

Clinical randomized controlled trials (RCTs) collect hundreds of measurements spanning various metric types (e.g., laboratory tests, cognitive/motor assessments, etc.) across 100s-1000s of subjects to evaluate the effect of a treatment, but do so at the cost of significant trial expense. To reduce the number of measurements, trial protocols can be revised to remove metrics extraneous to the study's objective, but doing so requires additional human labor and limits the set of hypotheses that can be studied with the collected data. In contrast, a planned missing design (PMD) can reduce the amount of data collected without removing any metric by imputing the unsampled data. Standard PMDs randomly sample data to leverage statistical properties of imputation algorithms, but are ad hoc, hence suboptimal. Methods that learn PMDs produce more sample-efficient PMDs, but are not suitable for RCTs because they require ample prior data (150+ subjects) to model the data distribution. Therefore, we introduce a framework called Measurement EfficienT Randomized Controlled Trials using Transformers with Input MasKing (METRIK), which, for the first time, calculates a PMD specific to the RCT from a modest amount of prior data (e.g., 60 subjects). Specifically, METRIK models the PMD as a learnable input masking layer that is optimized with a state-of-the-art imputer based on the Transformer architecture. METRIK implements a novel sampling and selection algorithm to generate a PMD that satisfies the trial designer's objective, i.e., whether to maximize sampling efficiency or imputation performance for a given sampling budget. Evaluated across five real-world clinical RCT datasets, METRIK increases the sampling efficiency of and imputation performance under the generated PMD by leveraging correlations over time and across metrics, thereby removing the need to manually remove metrics from the RCT.


CONFINE: Conformal Prediction for Interpretable Neural Networks

arXiv.org Machine Learning

Deep neural networks exhibit remarkable performance, yet their black-box nature limits their utility in fields like healthcare where interpretability is crucial. Existing explainability approaches often sacrifice accuracy and lack quantifiable measures of prediction uncertainty. In this study, we introduce Conformal Prediction for Interpretable Neural Networks (CONFINE), a versatile framework that generates prediction sets with statistically robust uncertainty estimates instead of point predictions to enhance model transparency and reliability. CONFINE not only provides example-based explanations and confidence estimates for individual predictions but also boosts accuracy by up to 3.6%. We define a new metric, correct efficiency, to evaluate the fraction of prediction sets that contain precisely the correct label and show that CONFINE achieves correct efficiency of up to 3.3% higher than the original accuracy, matching or exceeding prior methods. CONFINE's marginal and class-conditional coverages attest to its validity across tasks spanning medical image classification to language understanding. Being adaptable to any pre-trained classifier, CONFINE marks a significant advance towards transparent and trustworthy deep learning applications in critical domains.


Attention-Driven Training-Free Efficiency Enhancement of Diffusion Models

arXiv.org Artificial Intelligence

Diffusion Models (DMs) have exhibited superior performance in generating high-quality and diverse images. However, this exceptional performance comes at the cost of expensive architectural design, particularly due to the attention module heavily used in leading models. Existing works mainly adopt a retraining process to enhance DM efficiency. This is computationally expensive and not very scalable. To this end, we introduce the Attention-driven Training-free Efficient Diffusion Model (AT-EDM) framework that leverages attention maps to perform run-time pruning of redundant tokens, without the need for any retraining. Specifically, for single-denoising-step pruning, we develop a novel ranking algorithm, Generalized Weighted Page Rank (G-WPR), to identify redundant tokens, and a similarity-based recovery method to restore tokens for the convolution operation. In addition, we propose a Denoising-Steps-Aware Pruning (DSAP) approach to adjust the pruning budget across different denoising timesteps for better generation quality. Extensive evaluations show that AT-EDM performs favorably against prior art in terms of efficiency (e.g., 38.8% FLOPs saving and up to 1.53x speed-up over Stable Diffusion XL) while maintaining nearly the same FID and CLIP scores as the full model. Project webpage: https://atedm.github.io.


DynaMo: Accelerating Language Model Inference with Dynamic Multi-Token Sampling

arXiv.org Artificial Intelligence

Traditional language models operate autoregressively, i.e., they predict one token at a time. Rapid explosion in model sizes has resulted in high inference times. In this work, we propose DynaMo, a suite of multi-token prediction language models that reduce net inference times. Our models $\textit{dynamically}$ predict multiple tokens based on their confidence in the predicted joint probability distribution. We propose a lightweight technique to train these models, leveraging the weights of traditional autoregressive counterparts. Moreover, we propose novel ways to enhance the estimated joint probability to improve text generation quality, namely co-occurrence weighted masking and adaptive thresholding. We also propose systematic qualitative and quantitative methods to rigorously test the quality of generated text for non-autoregressive generation. One of the models in our suite, DynaMo-7.3B-T3, achieves same-quality generated text as the baseline (Pythia-6.9B) while achieving 2.57$\times$ speed-up with only 5.87% and 2.67% parameter and training time overheads, respectively.


PAGE: Domain-Incremental Adaptation with Past-Agnostic Generative Replay for Smart Healthcare

arXiv.org Artificial Intelligence

We propose PAGE, a domain-incremental adaptation strategy with past-agnostic generative replay for smart healthcare. PAGE enables generative replay without the aid of any preserved data or information from prior domains. When adapting to a new domain, it exploits real data from the new distribution and the current model to generate synthetic data that retain the learned knowledge of previous domains. By replaying the synthetic data with the new real data during training, PAGE achieves a good balance between domain adaptation and knowledge retention. In addition, we incorporate an extended inductive conformal prediction (EICP) method into PAGE to produce a confidence score and a credibility value for each detection result. This makes the predictions interpretable and provides statistical guarantees for disease detection in smart healthcare applications. We demonstrate PAGE's effectiveness in domain-incremental disease detection with three distinct disease datasets collected from commercially available WMSs. PAGE achieves highly competitive performance against state-of-the-art with superior scalability, data privacy, and feasibility. Furthermore, PAGE can enable up to 75% reduction in clinical workload with the help of EICP.


Neural Slot Interpreters: Grounding Object Semantics in Emergent Slot Representations

arXiv.org Artificial Intelligence

Object-centric methods have seen significant progress in unsupervised decomposition of raw perception into rich object-like abstractions. However, limited ability to ground object semantics of the real world into the learned abstractions has hindered their adoption in downstream understanding applications. We present the Neural Slot Interpreter (NSI) that learns to ground and generate object semantics via slot representations. At the core of NSI is an XML-like programming language that uses simple syntax rules to organize the object semantics of a scene into object-centric program primitives. Then, an alignment model learns to ground program primitives into slots through a bi-level contrastive learning objective over a shared embedding space. Finally, we formulate the NSI program generator model to use the dense associations inferred from the alignment model to generate object-centric programs from slots. Experiments on bi-modal retrieval tasks demonstrate the efficacy of the learned alignments, surpassing set-matching-based predictors by a significant margin. Moreover, learning the program generator from grounded associations enhances the predictive power of slots. NSI generated programs demonstrate improved performance of object-centric learners on property prediction and object detection, and scale with real-world scene complexity.


Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention Graph in Pre-Trained Transformers

arXiv.org Artificial Intelligence

Deployment of Transformer models on edge devices is becoming increasingly challenging due to the exponentially growing inference cost that scales quadratically with the number of tokens in the input sequence. Token pruning is an emerging solution to address this challenge due to its ease of deployment on various Transformer backbones. However, most token pruning methods require computationally expensive fine-tuning, which is undesirable in many edge deployment cases. In this work, we propose Zero-TPrune, the first zero-shot method that considers both the importance and similarity of tokens in performing token pruning. It leverages the attention graph of pre-trained Transformer models to produce an importance distribution for tokens via our proposed Weighted Page Rank (WPR) algorithm. This distribution further guides token partitioning for efficient similarity-based pruning. Due to the elimination of the fine-tuning overhead, Zero-TPrune can prune large models at negligible computational cost, switch between different pruning configurations at no computational cost, and perform hyperparameter tuning efficiently. We evaluate the performance of Zero-TPrune on vision tasks by applying it to various vision Transformer backbones and testing them on ImageNet. Without any fine-tuning, Zero-TPrune reduces the FLOPs cost of DeiT-S by 34.7\% and improves its throughput by 45.3\% with only 0.4\% accuracy loss. Compared with state-of-the-art pruning methods that require fine-tuning, Zero-TPrune not only eliminates the need for fine-tuning after pruning but also does so with only 0.1\% accuracy loss. Compared with state-of-the-art fine-tuning-free pruning methods, Zero-TPrune reduces accuracy loss by up to 49\% with the same or higher throughput.


Im-Promptu: In-Context Composition from Image Prompts

arXiv.org Artificial Intelligence

Large language models are few-shot learners that can solve diverse tasks from a handful of demonstrations. This implicit understanding of tasks suggests that the attention mechanisms over word tokens may play a role in analogical reasoning. In this work, we investigate whether analogical reasoning can enable in-context composition over composable elements of visual stimuli. First, we introduce a suite of three benchmarks to test the generalization properties of a visual in-context learner. We formalize the notion of an analogy-based in-context learner and use it to design a meta-learning framework called Im-Promptu. Whereas the requisite token granularity for language is well established, the appropriate compositional granularity for enabling in-context generalization in visual stimuli is usually unspecified. To this end, we use Im-Promptu to train multiple agents with different levels of compositionality, including vector representations, patch representations, and object slots. Our experiments reveal tradeoffs between extrapolation abilities and the degree of compositionality, with non-compositional representations extending learned composition rules to unseen domains but performing poorly on combinatorial tasks. Patch-based representations require patches to contain entire objects for robust extrapolation. At the same time, object-centric tokenizers coupled with a cross-attention module generate consistent and high-fidelity solutions, with these inductive biases being particularly crucial for compositional generalization. Lastly, we demonstrate a use case of Im-Promptu as an intuitive programming interface for image generation.