Jannin, Pierre
MerGen: Micro-electrode recording synthesis using a generative data-driven approach
Martin, Thibault, Sauleau, Paul, Haegelen, Claire, Jannin, Pierre, Baxter, John S. H.
The analysis of electrophysiological data is crucial for certain surgical procedures such as deep brain stimulation, which has been adopted for the treatment of a variety of neurological disorders. During the procedure, auditory analysis of these signals helps the clinical team to infer the neuroanatomical location of the stimulation electrode and thus optimize clinical outcomes. This task is complex, and requires an expert who in turn requires significant training. In this paper, we propose a generative neural network, called MerGen, capable of simulating de novo electrophysiological recordings, with a view to providing a realistic learning tool for clinicians trainees for identifying these signals. We demonstrate that the generated signals are perceptually indistinguishable from real signals by experts in the field, and that it is even possible to condition the generation efficiently to provide a didactic simulator adapted to a particular surgical scenario. The efficacy of this conditioning is demonstrated, comparing it to intra-observer and inter-observer variability amongst experts. We also demonstrate the use of this network for data augmentation for automatic signal classification which can play a role in decision-making support in the operating theatre.
Measuring proximity to standard planes during fetal brain ultrasound scanning
Di Vece, Chiara, Cirigliano, Antonio, Lous, Meala Le, Napolitano, Raffaele, David, Anna L., Peebles, Donald, Jannin, Pierre, Vasconcelos, Francisco, Stoyanov, Danail
This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices. Our model enables reliable segmentation across a diverse set of fetal brain images. Furthermore, the model incorporates a classification mechanism to identify the fetal brain precisely. Our model not only filters out frames lacking the brain but also generates masks for those containing it, enhancing the relevance of plane pose regression in clinical settings. We focus on fetal brain navigation from two-dimensional (2D) ultrasound (US) video analysis and combine this model with a US plane pose regression network to provide sensorless proximity detection to SPs and non-SPs planes; we emphasize the importance of proximity detection to SPs for guiding sonographers, offering a substantial advantage over traditional methods by allowing earlier and more precise adjustments during scanning. We demonstrate the practical applicability of our approach through validation on real fetal scan videos obtained from sonographers of varying expertise levels. Our findings demonstrate the potential of our approach to complement existing fetal US technologies and advance prenatal diagnostic practices.
Why is the winner the best?
Eisenmann, Matthias, Reinke, Annika, Weru, Vivienn, Tizabi, Minu Dietlinde, Isensee, Fabian, Adler, Tim J., Ali, Sharib, Andrearczyk, Vincent, Aubreville, Marc, Baid, Ujjwal, Bakas, Spyridon, Balu, Niranjan, Bano, Sophia, Bernal, Jorge, Bodenstedt, Sebastian, Casella, Alessandro, Cheplygina, Veronika, Daum, Marie, de Bruijne, Marleen, Depeursinge, Adrien, Dorent, Reuben, Egger, Jan, Ellis, David G., Engelhardt, Sandy, Ganz, Melanie, Ghatwary, Noha, Girard, Gabriel, Godau, Patrick, Gupta, Anubha, Hansen, Lasse, Harada, Kanako, Heinrich, Mattias, Heller, Nicholas, Hering, Alessa, Huaulmé, Arnaud, Jannin, Pierre, Kavur, Ali Emre, Kodym, Oldřich, Kozubek, Michal, Li, Jianning, Li, Hongwei, Ma, Jun, Martín-Isla, Carlos, Menze, Bjoern, Noble, Alison, Oreiller, Valentin, Padoy, Nicolas, Pati, Sarthak, Payette, Kelly, Rädsch, Tim, Rafael-Patiño, Jonathan, Bawa, Vivek Singh, Speidel, Stefanie, Sudre, Carole H., van Wijnen, Kimberlin, Wagner, Martin, Wei, Donglai, Yamlahi, Amine, Yap, Moi Hoon, Yuan, Chun, Zenk, Maximilian, Zia, Aneeq, Zimmerer, David, Aydogan, Dogu Baran, Bhattarai, Binod, Bloch, Louise, Brüngel, Raphael, Cho, Jihoon, Choi, Chanyeol, Dou, Qi, Ezhov, Ivan, Friedrich, Christoph M., Fuller, Clifton, Gaire, Rebati Raman, Galdran, Adrian, Faura, Álvaro García, Grammatikopoulou, Maria, Hong, SeulGi, Jahanifar, Mostafa, Jang, Ikbeom, Kadkhodamohammadi, Abdolrahim, Kang, Inha, Kofler, Florian, Kondo, Satoshi, Kuijf, Hugo, Li, Mingxing, Luu, Minh Huan, Martinčič, Tomaž, Morais, Pedro, Naser, Mohamed A., Oliveira, Bruno, Owen, David, Pang, Subeen, Park, Jinah, Park, Sung-Hong, Płotka, Szymon, Puybareau, Elodie, Rajpoot, Nasir, Ryu, Kanghyun, Saeed, Numan, Shephard, Adam, Shi, Pengcheng, Štepec, Dejan, Subedi, Ronast, Tochon, Guillaume, Torres, Helena R., Urien, Helene, Vilaça, João L., Wahid, Kareem Abdul, Wang, Haojie, Wang, Jiacheng, Wang, Liansheng, Wang, Xiyue, Wiestler, Benedikt, Wodzinski, Marek, Xia, Fangfang, Xie, Juanying, Xiong, Zhiwei, Yang, Sen, Yang, Yanwu, Zhao, Zixuan, Maier-Hein, Klaus, Jäger, Paul F., Kopp-Schneider, Annette, Maier-Hein, Lena
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and postprocessing (66%). The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.
PEg TRAnsfer Workflow recognition challenge report: Does multi-modal data improve recognition?
Huaulmé, Arnaud, Harada, Kanako, Nguyen, Quang-Minh, Park, Bogyu, Hong, Seungbum, Choi, Min-Kook, Peven, Michael, Li, Yunshuang, Long, Yonghao, Dou, Qi, Kumar, Satyadwyoom, Lalithkumar, Seenivasan, Hongliang, Ren, Matsuzaki, Hiroki, Ishikawa, Yuto, Harai, Yuriko, Kondo, Satoshi, Mitsuishi, Mamoru, Jannin, Pierre
This paper presents the design and results of the "PEg TRAnsfert Workflow recognition" (PETRAW) challenge whose objective was to develop surgical workflow recognition methods based on one or several modalities, among video, kinematic, and segmentation data, in order to study their added value. The PETRAW challenge provided a data set of 150 peg transfer sequences performed on a virtual simulator. This data set was composed of videos, kinematics, semantic segmentation, and workflow annotations which described the sequences at three different granularity levels: phase, step, and activity. Five tasks were proposed to the participants: three of them were related to the recognition of all granularities with one of the available modalities, while the others addressed the recognition with a combination of modalities. Average application-dependent balanced accuracy (AD-Accuracy) was used as evaluation metric to take unbalanced classes into account and because it is more clinically relevant than a frame-by-frame score. Seven teams participated in at least one task and four of them in all tasks. Best results are obtained with the use of the video and the kinematics data with an AD-Accuracy between 93% and 90% for the four teams who participated in all tasks. The improvement between video/kinematic-based methods and the uni-modality ones was significant for all of the teams. However, the difference in testing execution time between the video/kinematic-based and the kinematic-based methods has to be taken into consideration. Is it relevant to spend 20 to 200 times more computing time for less than 3% of improvement? The PETRAW data set is publicly available at www.synapse.org/PETRAW to encourage further research in surgical workflow recognition.
Offline identification of surgical deviations in laparoscopic rectopexy
Huaulmé, Arnaud, Voros, Sandrine, Reche, Fabian, Faucheron, Jean-Luc, Moreau-Gaudry, Alexandre, Jannin, Pierre
Objective: A median of 14.4% of patient undergone at least one adverse event during surgery and a third of them are preventable. The occurrence of adverse events forces surgeons to implement corrective strategies and, thus, deviate from the standard surgical process. Therefore, it is clear that the automatic identification of adverse events is a major challenge for patient safety. In this paper, we have proposed a method enabling us to identify such deviations. We have focused on identifying surgeons' deviations from standard surgical processes due to surgical events rather than anatomic specificities. This is particularly challenging, given the high variability in typical surgical procedure workflows. Methods: We have introduced a new approach designed to automatically detect and distinguish surgical process deviations based on multi-dimensional non-linear temporal scaling with a hidden semi-Markov model using manual annotation of surgical processes. The approach was then evaluated using cross-validation. Results: The best results have over 90% accuracy. Recall and precision were superior at 70%. We have provided a detailed analysis of the incorrectly-detected observations. Conclusion: Multi-dimensional non-linear temporal scaling with a hidden semi-Markov model provides promising results for detecting deviations. Our error analysis of the incorrectly-detected observations offers different leads in order to further improve our method. Significance: Our method demonstrated the feasibility of automatically detecting surgical deviations that could be implemented for both skill analysis and developing situation awareness-based computer-assisted surgical systems.