Goto

Collaborating Authors

 Jain, Nilesh


TokenButler: Token Importance is Predictable

arXiv.org Artificial Intelligence

Large Language Models (LLMs) rely on the Key-Value (KV) Cache to store token history, enabling efficient decoding of tokens. As the KV-Cache grows, it becomes a major memory and computation bottleneck, however, there is an opportunity to alleviate this bottleneck, especially because prior research has shown that only a small subset of tokens contribute meaningfully to each decoding step. A key challenge in finding these critical tokens is that they are dynamic, and heavily input query-dependent. Existing methods either risk quality by evicting tokens permanently, or retain the full KV-Cache but rely on retrieving chunks (pages) of tokens at generation, failing at dense, context-rich tasks. Additionally, many existing KV-Cache sparsity methods rely on inaccurate proxies for token importance. To address these limitations, we introduce TokenButler, a high-granularity, query-aware predictor that learns to identify these critical tokens. By training a light-weight predictor with less than 1.2% parameter overhead, TokenButler prioritizes tokens based on their contextual, predicted importance. This improves perplexity & downstream accuracy by over 8% relative to SoTA methods for estimating token importance. We evaluate TokenButler on a novel synthetic small-context co-referential retrieval task, demonstrating near-oracle accuracy. Code, models and benchmarks: https://github.com/abdelfattah-lab/TokenButler


KVCrush: Key value cache size-reduction using similarity in head-behaviour

arXiv.org Artificial Intelligence

Key-value (KV) caching has emerged as a crucial optimization technique for accelerating inference in large language models (LLMs). By allowing the attention operation to scale linearly rather than quadratically with the total sequence length, KV caching significantly enhances generation throughput. However, due to large context lengths in the modern LLMs, the memory footprint of the KV is a huge bottleneck for model deployment directly impacting the model's batch size, hindering its ability to deliver high-throughput. Existing research addresses this challenge using several techniques, such as discarding low-attention tokens, quantization, and matrix approximation which typically lead to a negative impact on the model accuracy. In this paper, We propose KVCrush technology which can be combined with many KV compression technologies to improve the model accuracy at a much smaller memory. KVCrush provides an alternate representation scheme for key-value states, along with a low-overhead token pruning algorithm that accounts for the token distribution in the KV cache, which in turn allows for a a smaller footprint while maintaining the accuracy of the model. Based on our results, KVCrush reduces LongBench KV Cache size by 4x with less than 1% accuracy drop and achieves state-of-the-art average accuracy with minimal overhead, incurring less than 0.5% total inference latency. KVCrush not only outperforms the accuracy of state-of-the-art importance-based token retention schemes but is also compatible with typical practical LLM deployments using KV cache paging schemes such as vLLM and mixed precision quantization.


SparAMX: Accelerating Compressed LLMs Token Generation on AMX-powered CPUs

arXiv.org Artificial Intelligence

Large language models have high compute, latency, and memory requirements. While specialized accelerators such as GPUs and TPUs typically run these workloads, CPUs are more widely available and consume less energy. Accelerating LLMs with CPUs enables broader AI access at a lower cost and power consumption. This acceleration potential for CPUs is especially relevant during the memory-bound decoding stage of LLM inference, which processes one token at a time and is becoming increasingly utilized with reasoning models. We utilize Advanced Matrix Extensions (AMX) support on the latest Intel CPUs together with unstructured sparsity to achieve a $1.42 \times$ reduction in end-to-end latency compared to the current PyTorch implementation by applying our technique in linear layers. We provide a set of open-source customized sparse kernels that can speed up any PyTorch model by automatically replacing all linear layers with our custom sparse implementation. Furthermore, we demonstrate for the first time the use of unstructured sparsity in the attention computation achieving a $1.14 \times$ speedup over the current systems without compromising accuracy. Code: https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SparAMX


Mamba-Shedder: Post-Transformer Compression for Efficient Selective Structured State Space Models

arXiv.org Artificial Intelligence

Large pre-trained models have achieved outstanding results in sequence modeling. The Transformer block and its attention mechanism have been the main drivers of the success of these models. Recently, alternative architectures, such as Selective Structured State Space Models (SSMs), have been proposed to address the inefficiencies of Transformers. This paper explores the compression of SSM-based models, particularly Mamba and its hybrids. We study the sensitivity of these models to the removal of selected components at different granularities to reduce the model size and computational overhead, thus improving their efficiency while maintaining accuracy. The proposed solutions, collectively referred to as Mamba-Shedder, achieve a speedup of up to 1.4x during inference, demonstrating that model efficiency can be improved by eliminating several redundancies with minimal impact on the overall model performance. The code is available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.


INRet: A General Framework for Accurate Retrieval of INRs for Shapes

arXiv.org Artificial Intelligence

Implicit neural representations (INRs) have become an important method for encoding various data types, such as 3D objects or scenes, images, and videos. They have proven to be particularly effective at representing 3D content, e.g., 3D scene reconstruction from 2D images, novel 3D content creation, as well as the representation, interpolation, and completion of 3D shapes. With the widespread generation of 3D data in an INR format, there is a need to support effective organization and retrieval of INRs saved in a data store. A key aspect of retrieval and clustering of INRs in a data store is the formulation of similarity between INRs that would, for example, enable retrieval of similar INRs using a query INR. In this work, we propose INRet, a method for determining similarity between INRs that represent shapes, thus enabling accurate retrieval of similar shape INRs from an INR data store. INRet flexibly supports different INR architectures such as INRs with octree grids, triplanes, and hash grids, as well as different implicit functions including signed/unsigned distance function and occupancy field. We demonstrate that our method is more general and accurate than the existing INR retrieval method, which only supports simple MLP INRs and requires the same architecture between the query and stored INRs. Furthermore, compared to converting INRs to other representations (e.g., point clouds or multi-view images) for 3D shape retrieval, INRet achieves higher accuracy while avoiding the conversion overhead.


Low-Rank Adapters Meet Neural Architecture Search for LLM Compression

arXiv.org Artificial Intelligence

The rapid expansion of Large Language Models (LLMs) has posed significant challenges regarding the computational resources required for fine-tuning and deployment. Recent advancements in low-rank adapters have demonstrated their efficacy in parameter-efficient fine-tuning (PEFT) of these models. This retrospective paper comprehensively discusses innovative approaches that synergize low-rank representations with Neural Architecture Search (NAS) techniques, particularly weight-sharing super-networks. Robust solutions for compressing and fine-tuning large pre-trained models are developed by integrating these methodologies. Our analysis highlights the potential of these combined strategies to democratize the use of LLMs, making them more accessible for deployment in resource-constrained environments. The resulting models exhibit reduced memory footprints and faster inference times, paving the way for more practical and scalable applications of LLMs. Models and code are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.


MultiPruner: Balanced Structure Removal in Foundation Models

arXiv.org Artificial Intelligence

Recently, state-of-the-art approaches for pruning large pre-trained models (LPMs) have demonstrated that the training-free removal of non-critical residual blocks in Transformers is viable for reducing model size, achieving results that outperform previous training-free pruning approaches. Motivated by these findings, we extend BlockPruner (Zhong et al., 2024) and propose MultiPruner, a pruning approach that surpasses recent training-free pruning methods by adopting a multidimensional, iterative, fine-grained pruning strategy. In MultiPruner, multidimensional pruning reinstates the structural balance in block-pruned models by sequentially compressing along three dimensions: i) residual blocks, ii) channels of multilayer perceptrons (MLP), and iii) attention heads. This solution enhances zero-shot accuracy on downstream tasks compared to other techniques while improving model compression ratios, producing compressed models with fewer computing and memory requirements. Extensive experiments demonstrate the advantages of the proposed method across various large pre-trained models. The code and pruning configurations are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.


Enhancing Data Integrity through Provenance Tracking in Semantic Web Frameworks

arXiv.org Artificial Intelligence

SURROUND Australia Pty Ltd demonstrates innovative applica-tions of the PROV Data Model (PROV-DM) and its Semantic Web variant, PROV-O, to systematically record and manage provenance information across multiple data processing domains. By employing RDF and Knowledge Graphs, SURROUND ad-dresses the critical challenges of shared entity identification and provenance granularity. The paper highlights the company's architecture for capturing comprehensive provenance data, en-abling robust validation, traceability, and knowledge inference. Through the examination of two projects, we illustrate how provenance mechanisms not only improve data reliability but also facilitate seamless integration across heterogeneous systems. Our findings underscore the importance of sophisticated provenance solutions in maintaining data integrity, serving as a reference for industry peers and academics engaged in provenance research and implementation. I. INTRODUCTION Encompass Australia Pty Ltd ("Encompass") is a little however unique innovation organization that has some expertise in giving state of the art simulated intelligence and information the executives items to both government and confidential area markets. Established with the mission to change how associations make due, cycle, and influence information, Encompass has quickly secured itself as a forerunner in the field by offering special and high level arrangements. At the center of Encompass' contributions lies its refined utilization of Semantic Web information, an innovative methodology that separates the organization from its rivals. Encompass solidly accepts that the Semantic Web is the best method for safeguarding significance after some time, empowering frameworks and hierarchical changes without the deficiency of basic setting.


Post-Training Statistical Calibration for Higher Activation Sparsity

arXiv.org Artificial Intelligence

We present Statistical Calibrated Activation Pruning (SCAP), a post-training activation pruning framework that (1) generalizes sparsification by input activations of Fully-Connected layers for generic and flexible application across Transformers, and (2) features a simple Mode-Centering technique to pre-calibrate activation distributions for maximizing post-training sparsity. Our results demonstrate robust Pareto efficiency compared to prior methods, translating to a 1.5x additional LLM decoding speedup against CATS at iso model quality. SCAP effectiveness is empirically verified across a wide range of models, including recent Transformer Decoders, MoE, Mamba2, Encoding Transformer, and pre-quantized models, highlighting its practicality and scalability. The code is available at: https://github.com/IntelLabs/SCAP.


SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models

arXiv.org Artificial Intelligence

Large pre-trained models (LPMs), such as large language models, have become ubiquitous and are employed in many applications. These models are often adapted to a desired domain or downstream task through a fine-tuning stage. This paper proposes SQFT, an end-to-end solution for low-precision sparse parameter-efficient fine-tuning of LPMs, allowing for effective model manipulation in resource-constrained environments. Additionally, an innovative strategy enables the merging of sparse weights with low-rank adapters without losing sparsity and accuracy, overcoming the limitations of previous approaches. SQFT also addresses the challenge of having quantized weights and adapters with different numerical precisions, enabling merging in the desired numerical format without sacrificing accuracy. Multiple adaptation scenarios, models, and comprehensive sparsity levels demonstrate the effectiveness of SQFT. Models and code are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.