Jacoby, Nori
Are Expressions for Music Emotions the Same Across Cultures?
Celen, Elif, van Rijn, Pol, Lee, Harin, Jacoby, Nori
Music evokes profound emotions, yet the universality of emotional descriptors across languages remains debated. A key challenge in cross-cultural research on music emotion is biased stimulus selection and manual curation of taxonomies, predominantly relying on Western music and languages. To address this, we propose a balanced experimental design with nine online experiments in Brazil, the US, and South Korea, involving N=672 participants. First, we sample a balanced set of popular music from these countries. Using an open-ended tagging pipeline, we then gather emotion terms to create culture-specific taxonomies. Finally, using these bottom-up taxonomies, participants rate emotions of each song. This allows us to map emotional similarities within and across cultures. Results show consistency in high arousal, high valence emotions but greater variability in others. Notably, machine translations were often inadequate to capture music-specific meanings. These findings together highlight the need for a domain-sensitive, open-ended, bottom-up emotion elicitation approach to reduce cultural biases in emotion research.
Characterizing Similarities and Divergences in Conversational Tones in Humans and LLMs by Sampling with People
Huang, Dun-Ming, Van Rijn, Pol, Sucholutsky, Ilia, Marjieh, Raja, Jacoby, Nori
Conversational tones -- the manners and attitudes in which speakers communicate -- are essential to effective communication. Amidst the increasing popularization of Large Language Models (LLMs) over recent years, it becomes necessary to characterize the divergences in their conversational tones relative to humans. However, existing investigations of conversational modalities rely on pre-existing taxonomies or text corpora, which suffer from experimenter bias and may not be representative of real-world distributions for the studies' psycholinguistic domains. Inspired by methods from cognitive science, we propose an iterative method for simultaneously eliciting conversational tones and sentences, where participants alternate between two tasks: (1) one participant identifies the tone of a given sentence and (2) a different participant generates a sentence based on that tone. We run 100 iterations of this process with human participants and GPT-4, then obtain a dataset of sentences and frequent conversational tones. In an additional experiment, humans and GPT-4 annotated all sentences with all tones. With data from 1,339 human participants, 33,370 human judgments, and 29,900 GPT-4 queries, we show how our approach can be used to create an interpretable geometric representation of relations between conversational tones in humans and GPT-4. This work demonstrates how combining ideas from machine learning and cognitive science can address challenges in human-computer interactions.
Representational Alignment Supports Effective Machine Teaching
Sucholutsky, Ilia, Collins, Katherine M., Malaviya, Maya, Jacoby, Nori, Liu, Weiyang, Sumers, Theodore R., Korakakis, Michalis, Bhatt, Umang, Ho, Mark, Tenenbaum, Joshua B., Love, Brad, Pardos, Zachary A., Weller, Adrian, Griffiths, Thomas L.
A good teacher should not only be knowledgeable; but should be able to communicate in a way that the student understands -- to share the student's representation of the world. In this work, we integrate insights from machine teaching and pragmatic communication with the burgeoning literature on representational alignment to characterize a utility curve defining a relationship between representational alignment and teacher capability for promoting student learning. To explore the characteristics of this utility curve, we design a supervised learning environment that disentangles representational alignment from teacher accuracy. We conduct extensive computational experiments with machines teaching machines, complemented by a series of experiments in which machines teach humans. Drawing on our findings that improved representational alignment with a student improves student learning outcomes (i.e., task accuracy), we design a classroom matching procedure that assigns students to teachers based on the utility curve. If we are to design effective machine teachers, it is not enough to build teachers that are accurate -- we want teachers that can align, representationally, to their students too.
A Rational Analysis of the Speech-to-Song Illusion
Marjieh, Raja, van Rijn, Pol, Sucholutsky, Ilia, Lee, Harin, Griffiths, Thomas L., Jacoby, Nori
The speech-to-song illusion is a robust psychological phenomenon whereby a spoken sentence sounds increasingly more musical as it is repeated. Despite decades of research, a complete formal account of this transformation is still lacking, and some of its nuanced characteristics, namely, that certain phrases appear to transform while others do not, is not well understood. Here we provide a formal account of this phenomenon, by recasting it as a statistical inference whereby a rational agent attempts to decide whether a sequence of utterances is more likely to have been produced in a song or speech. Using this approach and analyzing song and speech corpora, we further introduce a novel prose-to-lyrics illusion that is purely text-based. In this illusion, simply duplicating written sentences makes them appear more like song lyrics. We provide robust evidence for this new illusion in both human participants and large language models.
Giving Robots a Voice: Human-in-the-Loop Voice Creation and open-ended Labeling
van Rijn, Pol, Mertes, Silvan, Janowski, Kathrin, Weitz, Katharina, Jacoby, Nori, Andrรฉ, Elisabeth
Speech is a natural interface for humans to interact with robots. Yet, aligning a robot's voice to its appearance is challenging due to the rich vocabulary of both modalities. Previous research has explored a few labels to describe robots and tested them on a limited number of robots and existing voices. Here, we develop a robot-voice creation tool followed by large-scale behavioral human experiments (N=2,505). First, participants collectively tune robotic voices to match 175 robot images using an adaptive human-in-the-loop pipeline. Then, participants describe their impression of the robot or their matched voice using another human-in-the-loop paradigm for open-ended labeling. The elicited taxonomy is then used to rate robot attributes and to predict the best voice for an unseen robot. We offer a web interface to aid engineers in customizing robot voices, demonstrating the synergy between cognitive science and machine learning for engineering tools.
Getting aligned on representational alignment
Sucholutsky, Ilia, Muttenthaler, Lukas, Weller, Adrian, Peng, Andi, Bobu, Andreea, Kim, Been, Love, Bradley C., Grant, Erin, Groen, Iris, Achterberg, Jascha, Tenenbaum, Joshua B., Collins, Katherine M., Hermann, Katherine L., Oktar, Kerem, Greff, Klaus, Hebart, Martin N., Jacoby, Nori, Zhang, Qiuyi, Marjieh, Raja, Geirhos, Robert, Chen, Sherol, Kornblith, Simon, Rane, Sunayana, Konkle, Talia, O'Connell, Thomas P., Unterthiner, Thomas, Lampinen, Andrew K., Mรผller, Klaus-Robert, Toneva, Mariya, Griffiths, Thomas L.
Biological and artificial information processing systems form representations that they can use to categorize, reason, plan, navigate, and make decisions. How can we measure the extent to which the representations formed by these diverse systems agree? Do similarities in representations then translate into similar behavior? How can a system's representations be modified to better match those of another system? These questions pertaining to the study of representational alignment are at the heart of some of the most active research areas in cognitive science, neuroscience, and machine learning. For example, cognitive scientists measure the representational alignment of multiple individuals to identify shared cognitive priors, neuroscientists align fMRI responses from multiple individuals into a shared representational space for group-level analyses, and ML researchers distill knowledge from teacher models into student models by increasing their alignment. Unfortunately, there is limited knowledge transfer between research communities interested in representational alignment, so progress in one field often ends up being rediscovered independently in another. Thus, greater cross-field communication would be advantageous. To improve communication between these fields, we propose a unifying framework that can serve as a common language between researchers studying representational alignment. We survey the literature from all three fields and demonstrate how prior work fits into this framework. Finally, we lay out open problems in representational alignment where progress can benefit all three of these fields. We hope that our work can catalyze cross-disciplinary collaboration and accelerate progress for all communities studying and developing information processing systems. We note that this is a working paper and encourage readers to reach out with their suggestions for future revisions.
On the Informativeness of Supervision Signals
Sucholutsky, Ilia, Battleday, Ruairidh M., Collins, Katherine M., Marjieh, Raja, Peterson, Joshua C., Singh, Pulkit, Bhatt, Umang, Jacoby, Nori, Weller, Adrian, Griffiths, Thomas L.
Supervised learning typically focuses on learning transferable representations from training examples annotated by humans. While rich annotations (like soft labels) carry more information than sparse annotations (like hard labels), they are also more expensive to collect. For example, while hard labels only provide information about the closest class an object belongs to (e.g., "this is a dog"), soft labels provide information about the object's relationship with multiple classes (e.g., "this is most likely a dog, but it could also be a wolf or a coyote"). We use information theory to compare how a number of commonly-used supervision signals contribute to representation-learning performance, as well as how their capacity is affected by factors such as the number of labels, classes, dimensions, and noise. Our framework provides theoretical justification for using hard labels in the big-data regime, but richer supervision signals for few-shot learning and out-of-distribution generalization. We validate these results empirically in a series of experiments with over 1 million crowdsourced image annotations and conduct a cost-benefit analysis to establish a tradeoff curve that enables users to optimize the cost of supervising representation learning on their own datasets.
Large language models predict human sensory judgments across six modalities
Marjieh, Raja, Sucholutsky, Ilia, van Rijn, Pol, Jacoby, Nori, Griffiths, Thomas L.
Determining the extent to which the perceptual world can be recovered from language is a longstanding problem in philosophy and cognitive science. We show that state-of-the-art large language models can unlock new insights into this problem by providing a lower bound on the amount of perceptual information that can be extracted from language. Specifically, we elicit pairwise similarity judgments from GPT models across six psychophysical datasets. We show that the judgments are significantly correlated with human data across all domains, recovering well-known representations like the color wheel and pitch spiral. Surprisingly, we find that a model (GPT-4) co-trained on vision and language does not necessarily lead to improvements specific to the visual modality. To study the influence of specific languages on perception, we also apply the models to a multilingual color-naming task. We find that GPT-4 replicates cross-linguistic variation in English and Russian illuminating the interaction of language and perception.
The Universal Law of Generalization Holds for Naturalistic Stimuli
Marjieh, Raja, Jacoby, Nori, Peterson, Joshua C., Griffiths, Thomas L.
Shepard's universal law of generalization is a remarkable hypothesis about how intelligent organisms should perceive similarity. In its broadest form, the universal law states that the level of perceived similarity between a pair of stimuli should decay as a concave function of their distance when embedded in an appropriate psychological space. While extensively studied, evidence in support of the universal law has relied on low-dimensional stimuli and small stimulus sets that are very different from their real-world counterparts. This is largely because pairwise comparisons - as required for similarity judgments - scale quadratically in the number of stimuli. We provide direct evidence for the universal law in a naturalistic high-dimensional regime by analyzing an existing dataset of 214, 200 human similarity judgments and a newly collected dataset of 390, 819 human generalization judgments (N = 2406 US participants) across three sets of natural images. The Universal Law of Generalization Holds for Naturalistic Stimuli Statement of Relevance Humans constantly form generalizations, whether when trying to identify the color of an object or reasoning about which action to take based on past experiences.
Words are all you need? Language as an approximation for human similarity judgments
Marjieh, Raja, van Rijn, Pol, Sucholutsky, Ilia, Sumers, Theodore R., Lee, Harin, Griffiths, Thomas L., Jacoby, Nori
Human similarity judgments are a powerful supervision signal for machine learning applications based on techniques such as contrastive learning, information retrieval, and model alignment, but classical methods for collecting human similarity judgments are too expensive to be used at scale. Recent methods propose using pre-trained deep neural networks (DNNs) to approximate human similarity, but pre-trained DNNs may not be available for certain domains (e.g., medical images, low-resource languages) and their performance in approximating human similarity has not been extensively tested. We conducted an evaluation of 611 pre-trained models across three domains -- images, audio, video -- and found that there is a large gap in performance between human similarity judgments and pre-trained DNNs. To address this gap, we propose a new class of similarity approximation methods based on language. To collect the language data required by these new methods, we also developed and validated a novel adaptive tag collection pipeline. We find that our proposed language-based methods are significantly cheaper, in the number of human judgments, than classical methods, but still improve performance over the DNN-based methods. Finally, we also develop `stacked' methods that combine language embeddings with DNN embeddings, and find that these consistently provide the best approximations for human similarity across all three of our modalities. Based on the results of this comprehensive study, we provide a concise guide for researchers interested in collecting or approximating human similarity data. To accompany this guide, we also release all of the similarity and language data, a total of 206,339 human judgments, that we collected in our experiments, along with a detailed breakdown of all modeling results.