Goto

Collaborating Authors

 Iyer, Krithika


MORPH-LER: Log-Euclidean Regularization for Population-Aware Image Registration

arXiv.org Artificial Intelligence

Spatial transformations that capture population-level morphological statistics are critical for medical image analysis. Commonly used smoothness regularizers for image registration fail to integrate population statistics, leading to anatomically inconsistent transformations. Inverse consistency regularizers promote geometric consistency but lack population morphometrics integration. Regularizers that constrain deformation to low-dimensional manifold methods address this. However, they prioritize reconstruction over interpretability and neglect diffeomorphic properties, such as group composition and inverse consistency. We introduce MORPH-LER, a Log-Euclidean regularization framework for population-aware unsupervised image registration. MORPH-LER learns population morphometrics from spatial transformations to guide and regularize registration networks, ensuring anatomically plausible deformations. It features a bottleneck autoencoder that computes the principal logarithm of deformation fields via iterative square-root predictions. It creates a linearized latent space that respects diffeomorphic properties and enforces inverse consistency. By integrating a registration network with a diffeomorphic autoencoder, MORPH-LER produces smooth, meaningful deformation fields. The framework offers two main contributions: (1) a data-driven regularization strategy that incorporates population-level anatomical statistics to enhance transformation validity and (2) a linearized latent space that enables compact and interpretable deformation fields for efficient population morphometrics analysis. We validate MORPH-LER across two families of deep learning-based registration networks, demonstrating its ability to produce anatomically accurate, computationally efficient, and statistically meaningful transformations on the OASIS-1 brain imaging dataset.


LEDA: Log-Euclidean Diffeomorphic Autoencoder for Efficient Statistical Analysis of Diffeomorphism

arXiv.org Artificial Intelligence

Image registration is a core task in computational anatomy that establishes correspondences between images. Invertible deformable registration, which computes a deformation field and handles complex, non-linear transformation, is essential for tracking anatomical variations, especially in neuroimaging applications where inter-subject differences and longitudinal changes are key. Analyzing the deformation fields is challenging due to their non-linearity, limiting statistical analysis. However, traditional approaches for analyzing deformation fields are computationally expensive, sensitive to initialization, and prone to numerical errors, especially when the deformation is far from the identity. To address these limitations, we propose the Log-Euclidean Diffeomorphic Autoencoder (LEDA), an innovative framework designed to compute the principal logarithm of deformation fields by efficiently predicting consecutive square roots. LEDA operates within a linearized latent space that adheres to the diffeomorphisms group action laws, enhancing our model's robustness and applicability. We also introduce a loss function to enforce inverse consistency, ensuring accurate latent representations of deformation fields. Extensive experiments with the OASIS-1 dataset demonstrate the effectiveness of LEDA in accurately modeling and analyzing complex non-linear deformations while maintaining inverse consistency. Additionally, we evaluate its ability to capture and incorporate clinical variables, enhancing its relevance for clinical applications.


Automated Red Teaming with GOAT: the Generative Offensive Agent Tester

arXiv.org Artificial Intelligence

Red teaming assesses how large language models (LLMs) can produce content that violates norms, policies, and rules set during their safety training. However, most existing automated methods in the literature are not representative of the way humans tend to interact with AI models. Common users of AI models may not have advanced knowledge of adversarial machine learning methods or access to model internals, and they do not spend a lot of time crafting a single highly effective adversarial prompt. Instead, they are likely to make use of techniques commonly shared online and exploit the multiturn conversational nature of LLMs. While manual testing addresses this gap, it is an inefficient and often expensive process. To address these limitations, we introduce the Generative Offensive Agent Tester (GOAT), an automated agentic red teaming system that simulates plain language adversarial conversations while leveraging multiple adversarial prompting techniques to identify vulnerabilities in LLMs. We instantiate GOAT with 7 red teaming attacks by prompting a general-purpose model in a way that encourages reasoning through the choices of methods available, the current target model's response, and the next steps. Our approach is designed to be extensible and efficient, allowing human testers to focus on exploring new areas of risk while automation covers the scaled adversarial stress-testing of known risk territory. We present the design and evaluation of GOAT, demonstrating its effectiveness in identifying vulnerabilities in state-of-the-art LLMs, with an ASR@10 of 97% against Llama 3.1 and 88% against GPT-4 on the JailbreakBench dataset.


Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

arXiv.org Artificial Intelligence

We introduce Llama Guard, an LLM-based input-output safeguard model geared towards Human-AI conversation use cases. Our model incorporates a safety risk taxonomy, a valuable tool for categorizing a specific set of safety risks found in LLM prompts (i.e., prompt classification). This taxonomy is also instrumental in classifying the responses generated by LLMs to these prompts, a process we refer to as response classification. For the purpose of both prompt and response classification, we have meticulously gathered a dataset of high quality. Llama Guard, a Llama2-7b model that is instruction-tuned on our collected dataset, albeit low in volume, demonstrates strong performance on existing benchmarks such as the OpenAI Moderation Evaluation dataset and ToxicChat, where its performance matches or exceeds that of currently available content moderation tools. Llama Guard functions as a language model, carrying out multi-class classification and generating binary decision scores. Furthermore, the instruction fine-tuning of Llama Guard allows for the customization of tasks and the adaptation of output formats. This feature enhances the model's capabilities, such as enabling the adjustment of taxonomy categories to align with specific use cases, and facilitating zero-shot or few-shot prompting with diverse taxonomies at the input. We are making Llama Guard model weights available and we encourage researchers to further develop and adapt them to meet the evolving needs of the community for AI safety.


Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy

arXiv.org Artificial Intelligence

Statistical shape modeling is the computational process of discovering significant shape parameters from segmented anatomies captured by medical images (such as MRI and CT scans), which can fully describe subject-specific anatomy in the context of a population. The presence of substantial non-linear variability in human anatomy often makes the traditional shape modeling process challenging. Deep learning techniques can learn complex non-linear representations of shapes and generate statistical shape models that are more faithful to the underlying population-level variability. However, existing deep learning models still have limitations and require established/optimized shape models for training. We propose Mesh2SSM, a new approach that leverages unsupervised, permutation-invariant representation learning to estimate how to deform a template point cloud to subject-specific meshes, forming a correspondence-based shape model. Mesh2SSM can also learn a population-specific template, reducing any bias due to template selection. The proposed method operates directly on meshes and is computationally efficient, making it an attractive alternative to traditional and deep learning-based SSM approaches.


RENs: Relevance Encoding Networks

arXiv.org Artificial Intelligence

The manifold assumption for high-dimensional data assumes that the data is generated by varying a set of parameters obtained from a low-dimensional latent space. Deep generative models (DGMs) are widely used to learn data representations in an unsupervised way. DGMs parameterize the underlying low-dimensional manifold in the data space using bottleneck architectures such as variational autoencoders (VAEs). The bottleneck dimension for VAEs is treated as a hyperparameter that depends on the dataset and is fixed at design time after extensive tuning. As the intrinsic dimensionality of most real-world datasets is unknown, often, there is a mismatch between the intrinsic dimensionality and the latent dimensionality chosen as a hyperparameter. This mismatch can negatively contribute to the model performance for representation learning and sample generation tasks. This paper proposes relevance encoding networks (RENs): a novel probabilistic VAE-based framework that uses the automatic relevance determination (ARD) prior in the latent space to learn the data-specific bottleneck dimensionality. The relevance of each latent dimension is directly learned from the data along with the other model parameters using stochastic gradient descent and a reparameterization trick adapted to non-Gaussian priors. We leverage the concept of DeepSets to capture permutation invariant statistical properties in both data and latent spaces for relevance determination. The proposed framework is general and flexible and can be used for the state-of-the-art VAE models that leverage regularizers to impose specific characteristics in the latent space (e.g., disentanglement). With extensive experimentation on synthetic and public image datasets, we show that the proposed model learns the relevant latent bottleneck dimensionality without compromising the representation and generation quality of the samples.