Imani, Farhad
Privacy-Preserving Federated Learning with Differentially Private Hyperdimensional Computing
Piran, Fardin Jalil, Chen, Zhiling, Imani, Mohsen, Imani, Farhad
Federated Learning (FL) is essential for efficient data exchange in Internet of Things (IoT) environments, as it trains Machine Learning (ML) models locally and shares only model updates. However, FL is vulnerable to privacy threats like model inversion and membership inference attacks, which can expose sensitive training data. To address these privacy concerns, Differential Privacy (DP) mechanisms are often applied. Yet, adding DP noise to black-box ML models degrades performance, especially in dynamic IoT systems where continuous, lifelong FL learning accumulates excessive noise over time. To mitigate this issue, we introduce Federated HyperDimensional computing with Privacy-preserving (FedHDPrivacy), an eXplainable Artificial Intelligence (XAI) framework that combines the neuro-symbolic paradigm with DP. FedHDPrivacy carefully manages the balance between privacy and performance by theoretically tracking cumulative noise from previous rounds and adding only the necessary incremental noise to meet privacy requirements. In a real-world case study involving in-process monitoring of manufacturing machining operations, FedHDPrivacy demonstrates robust performance, outperforming standard FL frameworks-including Federated Averaging (FedAvg), Federated Stochastic Gradient Descent (FedSGD), Federated Proximal (FedProx), Federated Normalized Averaging (FedNova), and Federated Adam (FedAdam)-by up to 38%. FedHDPrivacy also shows potential for future enhancements, such as multimodal data fusion.
Explainable Hyperdimensional Computing for Balancing Privacy and Transparency in Additive Manufacturing Monitoring
Piran, Fardin Jalil, Poduval, Prathyush P., Barkam, Hamza Errahmouni, Imani, Mohsen, Imani, Farhad
In-situ sensing, in conjunction with learning models, presents a unique opportunity to address persistent defect issues in Additive Manufacturing (AM) processes. However, this integration introduces significant data privacy concerns, such as data leakage, sensor data compromise, and model inversion attacks, revealing critical details about part design, material composition, and machine parameters. Differential Privacy (DP) models, which inject noise into data under mathematical guarantees, offer a nuanced balance between data utility and privacy by obscuring traces of sensing data. However, the introduction of noise into learning models, often functioning as black boxes, complicates the prediction of how specific noise levels impact model accuracy. This study introduces the Differential Privacy-HyperDimensional computing (DP-HD) framework, leveraging the explainability of the vector symbolic paradigm to predict the noise impact on the accuracy of in-situ monitoring, safeguarding sensitive data while maintaining operational efficiency. Experimental results on real-world high-speed melt pool data of AM for detecting overhang anomalies demonstrate that DP-HD achieves superior operational efficiency, prediction accuracy, and robust privacy protection, outperforming state-of-the-art Machine Learning (ML) models. For example, when implementing the same level of privacy protection (with a privacy budget set at 1), our model achieved an accuracy of 94.43%, surpassing the performance of traditional models such as ResNet50 (52.30%), GoogLeNet (23.85%), AlexNet (55.78%), DenseNet201 (69.13%), and EfficientNet B2 (40.81%). Notably, DP-HD maintains high performance under substantial noise additions designed to enhance privacy, unlike current models that suffer significant accuracy declines under high privacy constraints.