Iba, Soshi
Diffusion-Informed Probabilistic Contact Search for Multi-Finger Manipulation
Kumar, Abhinav, Power, Thomas, Yang, Fan, Marinovic, Sergio Aguilera, Iba, Soshi, Zarrin, Rana Soltani, Berenson, Dmitry
Planning contact-rich interactions for multi-finger manipulation is challenging due to the high-dimensionality and hybrid nature of dynamics. Recent advances in data-driven methods have shown promise, but are sensitive to the quality of training data. Combining learning with classical methods like trajectory optimization and search adds additional structure to the problem and domain knowledge in the form of constraints, which can lead to outperforming the data on which models are trained. We present Diffusion-Informed Probabilistic Contact Search (DIPS), which uses an A* search to plan a sequence of contact modes informed by a diffusion model. We train the diffusion model on a dataset of demonstrations consisting of contact modes and trajectories generated by a trajectory optimizer given those modes. In addition, we use a particle filter-inspired method to reason about variability in diffusion sampling arising from model error, estimating likelihoods of trajectories using a learned discriminator. We show that our method outperforms ablations that do not reason about variability and can plan contact sequences that outperform those found in training data across multiple tasks. We evaluate on simulated tabletop card sliding and screwdriver turning tasks, as well as the screwdriver task in hardware to show that our combined learning and planning approach transfers to the real world.
Multi-finger Manipulation via Trajectory Optimization with Differentiable Rolling and Geometric Constraints
Yang, Fan, Power, Thomas, Marinovic, Sergio Aguilera, Iba, Soshi, Zarrin, Rana Soltani, Berenson, Dmitry
Parameterizing finger rolling and finger-object contacts in a differentiable manner is important for formulating dexterous manipulation as a trajectory optimization problem. In contrast to previous methods which often assume simplified geometries of the robot and object or do not explicitly model finger rolling, we propose a method to further extend the capabilities of dexterous manipulation by accounting for non-trivial geometries of both the robot and the object. By integrating the object's Signed Distance Field (SDF) with a sampling method, our method estimates contact and rolling-related variables and includes those in a trajectory optimization framework. This formulation naturally allows for the emergence of finger-rolling behaviors, enabling the robot to locally adjust the contact points. Our method is tested in a peg alignment task and a screwdriver turning task, where it outperforms the baselines in terms of achieving desired object configurations and avoiding dropping the object. We also successfully apply our method to a real-world screwdriver turning task, demonstrating its robustness to the sim2real gap.
Hierarchical Deep Learning for Intention Estimation of Teleoperation Manipulation in Assembly Tasks
Cai, Mingyu, Patel, Karankumar, Iba, Soshi, Li, Songpo
In human-robot collaboration, shared control presents an opportunity to teleoperate robotic manipulation to improve the efficiency of manufacturing and assembly processes. Robots are expected to assist in executing the user's intentions. To this end, robust and prompt intention estimation is needed, relying on behavioral observations. The framework presents an intention estimation technique at hierarchical levels i.e., low-level actions and high-level tasks, by incorporating multi-scale hierarchical information in neural networks. Technically, we employ hierarchical dependency loss to boost overall accuracy. Furthermore, we propose a multi-window method that assigns proper hierarchical prediction windows of input data. An analysis of the predictive power with various inputs demonstrates the predominance of the deep hierarchical model in the sense of prediction accuracy and early intention identification. We implement the algorithm on a virtual reality (VR) setup to teleoperate robotic hands in a simulation with various assembly tasks to show the effectiveness of online estimation.
ViHOPE: Visuotactile In-Hand Object 6D Pose Estimation with Shape Completion
Li, Hongyu, Dikhale, Snehal, Iba, Soshi, Jamali, Nawid
In this letter, we introduce ViHOPE, a novel framework for estimating the 6D pose of an in-hand object using visuotactile perception. Our key insight is that the accuracy of the 6D object pose estimate can be improved by explicitly completing the shape of the object. To this end, we introduce a novel visuotactile shape completion module that uses a conditional Generative Adversarial Network to complete the shape of an in-hand object based on volumetric representation. This approach improves over prior works that directly regress visuotactile observations to a 6D pose. By explicitly completing the shape of the in-hand object and jointly optimizing the shape completion and pose estimation tasks, we improve the accuracy of the 6D object pose estimate. We train and test our model on a synthetic dataset and compare it with the state-of-the-art. In the visuotactile shape completion task, we outperform the state-of-the-art by 265% using the Intersection of Union metric and achieve 88% lower Chamfer Distance. In the visuotactile pose estimation task, we present results that suggest our framework reduces position and angular errors by 35% and 64%, respectively. Furthermore, we ablate our framework to confirm the gain on the 6D object pose estimate from explicitly completing the shape. Ultimately, we show that our framework produces models that are robust to sim-to-real transfer on a real-world robot platform.
Hierarchical Graph Neural Networks for Proprioceptive 6D Pose Estimation of In-hand Objects
Rezazadeh, Alireza, Dikhale, Snehal, Iba, Soshi, Jamali, Nawid
Robotic manipulation, in particular in-hand object manipulation, often requires an accurate estimate of the object's 6D pose. To improve the accuracy of the estimated pose, state-of-the-art approaches in 6D object pose estimation use observational data from one or more modalities, e.g., RGB images, depth, and tactile readings. However, existing approaches make limited use of the underlying geometric structure of the object captured by these modalities, thereby, increasing their reliance on visual features. This results in poor performance when presented with objects that lack such visual features or when visual features are simply occluded. Furthermore, current approaches do not take advantage of the proprioceptive information embedded in the position of the fingers. To address these limitations, in this paper: (1) we introduce a hierarchical graph neural network architecture for combining multimodal (vision and touch) data that allows for a geometrically informed 6D object pose estimation, (2) we introduce a hierarchical message passing operation that flows the information within and across modalities to learn a graph-based object representation, and (3) we introduce a method that accounts for the proprioceptive information for in-hand object representation. We evaluate our model on a diverse subset of objects from the YCB Object and Model Set, and show that our method substantially outperforms existing state-of-the-art work in accuracy and robustness to occlusion. We also deploy our proposed framework on a real robot and qualitatively demonstrate successful transfer to real settings.
VisuoSpatial Foresight for Physical Sequential Fabric Manipulation
Hoque, Ryan, Seita, Daniel, Balakrishna, Ashwin, Ganapathi, Aditya, Tanwani, Ajay Kumar, Jamali, Nawid, Yamane, Katsu, Iba, Soshi, Goldberg, Ken
Robotic fabric manipulation has applications in home robotics, textiles, senior care and surgery. Existing fabric manipulation techniques, however, are designed for specific tasks, making it difficult to generalize across different but related tasks. We build upon the Visual Foresight framework to learn fabric dynamics that can be efficiently reused to accomplish different sequential fabric manipulation tasks with a single goal-conditioned policy. We extend our earlier work on VisuoSpatial Foresight (VSF), which learns visual dynamics on domain randomized RGB images and depth maps simultaneously and completely in simulation. In this earlier work, we evaluated VSF on multi-step fabric smoothing and folding tasks against 5 baseline methods in simulation and on the da Vinci Research Kit (dVRK) surgical robot without any demonstrations at train or test time. A key finding was that depth sensing significantly improves performance: RGBD data yields an 80% improvement in fabric folding success rate in simulation over pure RGB data. In this work, we vary 4 components of VSF, including data generation, the choice of visual dynamics model, cost function, and optimization procedure. Results suggest that training visual dynamics models using longer, corner-based actions can improve the efficiency of fabric folding by 76% and enable a physical sequential fabric folding task that VSF could not previously perform with 90% reliability. Code, data, videos, and supplementary material are available at https://sites.google.com/view/fabric-vsf/.
Deep Imitation Learning of Sequential Fabric Smoothing Policies
Seita, Daniel, Ganapathi, Aditya, Hoque, Ryan, Hwang, Minho, Cen, Edward, Tanwani, Ajay Kumar, Balakrishna, Ashwin, Thananjeyan, Brijen, Ichnowski, Jeffrey, Jamali, Nawid, Yamane, Katsu, Iba, Soshi, Canny, John, Goldberg, Ken
Sequential pulling policies to flatten and smooth fabrics have applications from surgery to manufacturing to home tasks such as bed making and folding clothes. Due to the complexity of fabric states and dynamics, we apply deep imitation learning to learn policies that, given color or depth images of a rectangular fabric sample, estimate pick points and pull vectors to spread the fabric to maximize coverage. To generate data, we develop a fabric simulator and an algorithmic demonstrator that has access to complete state information. We train policies in simulation using domain randomization and dataset aggregation (DAgger) on three tiers of difficulty in the initial randomized configuration. We present results comparing five baseline policies to learned policies and report systematic comparisons of color vs. depth images as inputs. In simulation, learned policies achieve comparable or superior performance to analytic baselines. In 120 physical experiments with the da Vinci Research Kit (dVRK) surgical robot, policies trained in simulation attain 86% and 69% final coverage for color and depth inputs, respectively, suggesting the feasibility of learning fabric smoothing policies from simulation. Supplementary material is available at https://sites.google.com/view/ fabric-smoothing.
Robot Bed-Making: Deep Transfer Learning Using Depth Sensing of Deformable Fabric
Seita, Daniel, Jamali, Nawid, Laskey, Michael, Berenstein, Ron, Tanwani, Ajay Kumar, Baskaran, Prakash, Iba, Soshi, Canny, John, Goldberg, Ken
Abstract-- Bed-making is a common task well-suited for home robots since it is tolerant to error and not time-critical. Bed-making can also be difficult for senior citizens and those with limited mobility due to the bending and reaching movements required. Autonomous bed-making combines multiple challenges in robotics: perception in unstructured environments, deformable object manipulation, transfer learning, and sequential decision making. We formalize the bed-making problem as one of maximizing surface coverage with a blanket, and explore algorithmic approaches that use deep learning on depth images to be invariant to the color and pattern of the blankets. We train two networks: one to identify a corner of the blanket and another to determine when to transition to the other side of the bed. Using the first network, the robot grasps at its estimate of the blanket corner and then pulls it to the appropriate corner of the bed frame. The second network estimates if the robot has sufficiently covered one side and can transition to the other, or if it should attempt another grasp from the same side. We evaluate with two robots, the Toyota HSR and the Fetch, and three blankets. Using 2018 and 654 depth images for training the grasp and transition networks respectively, experiments with a quarter-scale twin bed achieve an average of 91.7% blanket coverage, nearly matching human supervisors with 95.0% coverage. Data is available at https: //sites.google.com/view/bed-make. A common home task is bed-making [4], which is rarely enjoyed and can be physically challenging due to bending and leaning movements. Surveys of older adults in the United States [9], [3], suggest that they are willing to have a robot assistant in their homes, particularly for physically demanding tasks.