Huo, Jiayu
Self-supervised Brain Lesion Generation for Effective Data Augmentation of Medical Images
Huo, Jiayu, Ourselin, Sebastien, Sparks, Rachel
Accurate brain lesion delineation is important for planning neurosurgical treatment. Automatic brain lesion segmentation methods based on convolutional neural networks have demonstrated remarkable performance. However, neural network performance is constrained by the lack of large-scale well-annotated training datasets. In this manuscript, we propose a comprehensive framework to efficiently generate new, realistic samples for training a brain lesion segmentation model. We first train a lesion generator, based on an adversarial autoencoder, in a self-supervised manner. Next, we utilize a novel image composition algorithm, Soft Poisson Blending, to seamlessly combine synthetic lesions and brain images to obtain training samples. Finally, to effectively train the brain lesion segmentation model with augmented images we introduce a new prototype consistence regularization to align real and synthetic features. Our framework is validated by extensive experiments on two public brain lesion segmentation datasets: ATLAS v2.0 and Shift MS. Our method outperforms existing brain image data augmentation schemes. For instance, our method improves the Dice from 50.36% to 60.23% compared to the U-Net with conventional data augmentation techniques for the ATLAS v2.0 dataset.
MatchSeg: Towards Better Segmentation via Reference Image Matching
Xiao, Ruiqiang, Huo, Jiayu, Zheng, Haotian, Liu, Yang, Ourselin, Sebastien, Sparks, Rachel
Recently, automated medical image segmentation methods based on deep learning have achieved great success. However, they heavily rely on large annotated datasets, which are costly and time-consuming to acquire. Few-shot learning aims to overcome the need for annotated data by using a small labeled dataset, known as a support set, to guide predicting labels for new, unlabeled images, known as the query set. Inspired by this paradigm, we introduce MatchSeg, a novel framework that enhances medical image segmentation through strategic reference image matching. We leverage contrastive language-image pre-training (CLIP) to select highly relevant samples when defining the support set. Additionally, we design a joint attention module to strengthen the interaction between support and query features, facilitating a more effective knowledge transfer between support and query sets. We validated our method across four public datasets. Experimental results demonstrate superior segmentation performance and powerful domain generalization ability of MatchSeg against existing methods for domain-specific and cross-domain segmentation tasks. Our code is made available at https://github.com/keeplearning-again/MatchSeg
Rethinking Low-quality Optical Flow in Unsupervised Surgical Instrument Segmentation
Wu, Peiran, Liu, Yang, Huo, Jiayu, Zhang, Gongyu, Bergeles, Christos, Sparks, Rachel, Dasgupta, Prokar, Granados, Alejandro, Ourselin, Sebastien
Video-based surgical instrument segmentation plays an important role in robot-assisted surgeries. Unlike supervised settings, unsupervised segmentation relies heavily on motion cues, which are challenging to discern due to the typically lower quality of optical flow in surgical footage compared to natural scenes. This presents a considerable burden for the advancement of unsupervised segmentation techniques. In our work, we address the challenge of enhancing model performance despite the inherent limitations of low-quality optical flow. Our methodology employs a three-pronged approach: extracting boundaries directly from the optical flow, selectively discarding frames with inferior flow quality, and employing a fine-tuning process with variable frame rates. We thoroughly evaluate our strategy on the EndoVis2017 VOS dataset and Endovis2017 Challenge dataset, where our model demonstrates promising results, achieving a mean Intersection-over-Union (mIoU) of 0.75 and 0.72, respectively. Our findings suggest that our approach can greatly decrease the need for manual annotations in clinical environments and may facilitate the annotation process for new datasets. The code is available at https://github.com/wpr1018001/Rethinking-Low-quality-Optical-Flow.git
SAR-RARP50: Segmentation of surgical instrumentation and Action Recognition on Robot-Assisted Radical Prostatectomy Challenge
Psychogyios, Dimitrios, Colleoni, Emanuele, Van Amsterdam, Beatrice, Li, Chih-Yang, Huang, Shu-Yu, Li, Yuchong, Jia, Fucang, Zou, Baosheng, Wang, Guotai, Liu, Yang, Boels, Maxence, Huo, Jiayu, Sparks, Rachel, Dasgupta, Prokar, Granados, Alejandro, Ourselin, Sebastien, Xu, Mengya, Wang, An, Wu, Yanan, Bai, Long, Ren, Hongliang, Yamada, Atsushi, Harai, Yuriko, Ishikawa, Yuto, Hayashi, Kazuyuki, Simoens, Jente, DeBacker, Pieter, Cisternino, Francesco, Furnari, Gabriele, Mottrie, Alex, Ferraguti, Federica, Kondo, Satoshi, Kasai, Satoshi, Hirasawa, Kousuke, Kim, Soohee, Lee, Seung Hyun, Lee, Kyu Eun, Kong, Hyoun-Joong, Fu, Kui, Li, Chao, An, Shan, Krell, Stefanie, Bodenstedt, Sebastian, Ayobi, Nicolas, Perez, Alejandra, Rodriguez, Santiago, Puentes, Juanita, Arbelaez, Pablo, Mohareri, Omid, Stoyanov, Danail
Surgical tool segmentation and action recognition are fundamental building blocks in many computer-assisted intervention applications, ranging from surgical skills assessment to decision support systems. Nowadays, learning-based action recognition and segmentation approaches outperform classical methods, relying, however, on large, annotated datasets. Furthermore, action recognition and tool segmentation algorithms are often trained and make predictions in isolation from each other, without exploiting potential cross-task relationships. With the EndoVis 2022 SAR-RARP50 challenge, we release the first multimodal, publicly available, in-vivo, dataset for surgical action recognition and semantic instrumentation segmentation, containing 50 suturing video segments of Robotic Assisted Radical Prostatectomy (RARP). The aim of the challenge is twofold. First, to enable researchers to leverage the scale of the provided dataset and develop robust and highly accurate single-task action recognition and tool segmentation approaches in the surgical domain. Second, to further explore the potential of multitask-based learning approaches and determine their comparative advantage against their single-task counterparts. A total of 12 teams participated in the challenge, contributing 7 action recognition methods, 9 instrument segmentation techniques, and 4 multitask approaches that integrated both action recognition and instrument segmentation. The complete SAR-RARP50 dataset is available at: https://rdr.ucl.ac.uk/projects/SARRARP50_Segmentation_of_surgical_instrumentation_and_Action_Recognition_on_Robot-Assisted_Radical_Prostatectomy_Challenge/191091