Huang, Wenlong
A Real-to-Sim-to-Real Approach to Robotic Manipulation with VLM-Generated Iterative Keypoint Rewards
Patel, Shivansh, Yin, Xinchen, Huang, Wenlong, Garg, Shubham, Nayyeri, Hooshang, Fei-Fei, Li, Lazebnik, Svetlana, Li, Yunzhu
Task specification for robotic manipulation in open-world environments is challenging, requiring flexible and adaptive objectives that align with human intentions and can evolve through iterative feedback. We introduce Iterative Keypoint Reward (IKER), a visually grounded, Python-based reward function that serves as a dynamic task specification. Our framework leverages VLMs to generate and refine these reward functions for multi-step manipulation tasks. Given RGB-D observations and free-form language instructions, we sample keypoints in the scene and generate a reward function conditioned on these keypoints. IKER operates on the spatial relationships between keypoints, leveraging commonsense priors about the desired behaviors, and enabling precise SE(3) control. We reconstruct real-world scenes in simulation and use the generated rewards to train reinforcement learning (RL) policies, which are then deployed into the real world-forming a real-to-sim-to-real loop. Our approach demonstrates notable capabilities across diverse scenarios, including both prehensile and non-prehensile tasks, showcasing multi-step task execution, spontaneous error recovery, and on-the-fly strategy adjustments. The results highlight IKER's effectiveness in enabling robots to perform multi-step tasks in dynamic environments through iterative reward shaping.
Grounded Decoding: Guiding Text Generation with Grounded Models for Embodied Agents
Huang, Wenlong, Xia, Fei, Shah, Dhruv, Driess, Danny, Zeng, Andy, Lu, Yao, Florence, Pete, Mordatch, Igor, Levine, Sergey, Hausman, Karol, Ichter, Brian
Recent progress in large language models (LLMs) has demonstrated the ability to learn and leverage Internet-scale knowledge through pre-training with autoregressive models. Unfortunately, applying such models to settings with embodied agents, such as robots, is challenging due to their lack of experience with the physical world, inability to parse non-language observations, and ignorance of rewards or safety constraints that robots may require. On the other hand, language-conditioned robotic policies that learn from interaction data can provide the necessary grounding that allows the agent to be correctly situated in the real world, but such policies are limited by the lack of high-level semantic understanding due to the limited breadth of the interaction data available for training them. Thus, if we want to make use of the semantic knowledge in a language model while still situating it in an embodied setting, we must construct an action sequence that is both likely according to the language model and also realizable according to grounded models of the environment. We frame this as a problem similar to probabilistic filtering: decode a sequence that both has high probability under the language model and high probability under a set of grounded model objectives. We demonstrate how such grounded models can be obtained across three simulation and real-world domains, and that the proposed decoding strategy is able to solve complex, long-horizon embodiment tasks in a robotic setting by leveraging the knowledge of both models. The project's website can be found at grounded-decoding.github.io.
VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models
Huang, Wenlong, Wang, Chen, Zhang, Ruohan, Li, Yunzhu, Wu, Jiajun, Fei-Fei, Li
Large language models (LLMs) are shown to possess a wealth of actionable knowledge that can be extracted for robot manipulation in the form of reasoning and planning. Despite the progress, most still rely on pre-defined motion primitives to carry out the physical interactions with the environment, which remains a major bottleneck. In this work, we aim to synthesize robot trajectories, i.e., a dense sequence of 6-DoF end-effector waypoints, for a large variety of manipulation tasks given an open-set of instructions and an open-set of objects. We achieve this by first observing that LLMs excel at inferring affordances and constraints given a free-form language instruction. More importantly, by leveraging their code-writing capabilities, they can interact with a vision-language model (VLM) to compose 3D value maps to ground the knowledge into the observation space of the agent. The composed value maps are then used in a model-based planning framework to zero-shot synthesize closed-loop robot trajectories with robustness to dynamic perturbations. We further demonstrate how the proposed framework can benefit from online experiences by efficiently learning a dynamics model for scenes that involve contact-rich interactions. We present a large-scale study of the proposed method in both simulated and real-robot environments, showcasing the ability to perform a large variety of everyday manipulation tasks specified in free-form natural language. Videos and code at https://voxposer.github.io
Code as Policies: Language Model Programs for Embodied Control
Liang, Jacky, Huang, Wenlong, Xia, Fei, Xu, Peng, Hausman, Karol, Ichter, Brian, Florence, Pete, Zeng, Andy
Large language models (LLMs) trained on code completion have been shown to be capable of synthesizing simple Python programs from docstrings [1]. We find that these code-writing LLMs can be re-purposed to write robot policy code, given natural language commands. Specifically, policy code can express functions or feedback loops that process perception outputs (e.g.,from object detectors [2], [3]) and parameterize control primitive APIs. When provided as input several example language commands (formatted as comments) followed by corresponding policy code (via few-shot prompting), LLMs can take in new commands and autonomously re-compose API calls to generate new policy code respectively. By chaining classic logic structures and referencing third-party libraries (e.g., NumPy, Shapely) to perform arithmetic, LLMs used in this way can write robot policies that (i) exhibit spatial-geometric reasoning, (ii) generalize to new instructions, and (iii) prescribe precise values (e.g., velocities) to ambiguous descriptions ("faster") depending on context (i.e., behavioral commonsense). This paper presents code as policies: a robot-centric formulation of language model generated programs (LMPs) that can represent reactive policies (e.g., impedance controllers), as well as waypoint-based policies (vision-based pick and place, trajectory-based control), demonstrated across multiple real robot platforms. Central to our approach is prompting hierarchical code-gen (recursively defining undefined functions), which can write more complex code and also improves state-of-the-art to solve 39.8% of problems on the HumanEval [1] benchmark. Code and videos are available at https://code-as-policies.github.io
PaLM-E: An Embodied Multimodal Language Model
Driess, Danny, Xia, Fei, Sajjadi, Mehdi S. M., Lynch, Corey, Chowdhery, Aakanksha, Ichter, Brian, Wahid, Ayzaan, Tompson, Jonathan, Vuong, Quan, Yu, Tianhe, Huang, Wenlong, Chebotar, Yevgen, Sermanet, Pierre, Duckworth, Daniel, Levine, Sergey, Vanhoucke, Vincent, Hausman, Karol, Toussaint, Marc, Greff, Klaus, Zeng, Andy, Mordatch, Igor, Florence, Pete
Large language models (LLMs) demonstrate strong reasoning Large language models have been demonstrated to perform capabilities across various domains, including dialogue complex tasks. However, enabling general inference in the (Glaese et al., 2022; Thoppilan et al., 2022), step-by-step real world, e.g. for robotics problems, raises the challenge reasoning (Wei et al., 2022; Kojima et al., 2022), math problem of grounding. We propose embodied language models to directly solving (Lewkowycz et al., 2022; Polu et al., 2022), and incorporate real-world continuous sensor modalities code writing (Chen et al., 2021a). However, a limitation of into language models and thereby establish the link between such models for inference in the real world is the issue of words and percepts. Input to our embodied language grounding: while training LLMs on massive textual data model are multi-modal sentences that interleave visual, continuous may lead to representations that relate to our physical world, state estimation, and textual input encodings. We connecting those representations to real-world visual and train these encodings end-to-end, in conjunction with a pretrained physical sensor modalities is essential to solving a wider large language model, for multiple embodied tasks range of grounded real-world problems in computer vision including sequential robotic manipulation planning, visual and robotics (Tellex et al., 2020).
Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning
Huang, Wenlong, Mordatch, Igor, Abbeel, Pieter, Pathak, Deepak
Abstract-- Dexterous manipulation of arbitrary objects, a fundamental daily task for humans, has been a grand challenge for autonomous robotic systems. Although data-driven approaches using reinforcement learning can develop specialist policies that discover behaviors to control a single object, they often exhibit poor generalization to unseen ones. In this work, we show that policies learned by existing reinforcement learning algorithms can in fact be generalist when combined with multi-task learning and a well-chosen object representation. We show that a single generalist policy can perform in-hand manipulation of over 100 geometrically-diverse realworld objects and generalize to new objects with unseen shape or size. Interestingly, we find that multi-task learning with object point cloud representations not only generalizes better but even outperforms the single-object specialist policies on both training as well as held-out test objects.
One Policy to Control Them All: Shared Modular Policies for Agent-Agnostic Control
Huang, Wenlong, Mordatch, Igor, Pathak, Deepak
Reinforcement learning is typically concerned with learning control policies tailored to a particular agent. We investigate whether there exists a single global policy that can generalize to control a wide variety of agent morphologies -- ones in which even dimensionality of state and action spaces changes. We propose to express this global policy as a collection of identical modular neural networks, dubbed as Shared Modular Policies (SMP), that correspond to each of the agent's actuators. Every module is only responsible for controlling its corresponding actuator and receives information from only its local sensors. In addition, messages are passed between modules, propagating information between distant modules. We show that a single modular policy can successfully generate locomotion behaviors for several planar agents with different skeletal structures such as monopod hoppers, quadrupeds, bipeds, and generalize to variants not seen during training -- a process that would normally require training and manual hyperparameter tuning for each morphology. We observe that a wide variety of drastically diverse locomotion styles across morphologies as well as centralized coordination emerges via message passing between decentralized modules purely from the reinforcement learning objective. Videos and code at https://huangwl18.github.io/modular-rl/