Goto

Collaborating Authors

 Huang, Liang


Unmanned Surface Vehicle Path Planning from the Perspective of Multi-Modality Constraints: A Comprehensive Analysis

arXiv.org Artificial Intelligence

With the development and application of artificial intelligence and machine learning, more and more studies focus on unmanned vehicles and their applications (Zhou, Z., 2016). For example, Unmanned Ground Vehicle (UGV) or wheeled robot is widely used in field of industrial automation (automatic forklift), warehouse management, planet exploring (lunar rover), disaster rescue, intelligent transportation (automatic drive) and military operation (de-mining robot) (Arai et al., 2002; Farinelli et al., 2004; Kui et al., 2007). The application of Unmanned Aerial Vehicle (UAV) is also increasingly changed from military domain to civil use, such as remote sensing photographing, agricultural spraying, communications relay, environmental monitoring and express service (Jayoung et al., 2013; George et al., 2012; Mingzhu et al., 2016). The development of UGV and UAV has already been updated to a new level. Another unmanned vehicle should also be paid attention to, which is the Unmanned Surface Vehicle (USV). The application scenarios are not widely applied for civil use and the studies of a USV are relatively fewer and commence a bit late.


Citrus: Leveraging Expert Cognitive Pathways in a Medical Language Model for Advanced Medical Decision Support

arXiv.org Artificial Intelligence

Large language models (LLMs), particularly those with reasoning capabilities, have rapidly advanced in recent years, demonstrating significant potential across a wide range of applications. However, their deployment in healthcare, especially in disease reasoning tasks, is hindered by the challenge of acquiring expert-level cognitive data. In this paper, we introduce Citrus, a medical language model that bridges the gap between clinical expertise and AI reasoning by emulating the cognitive processes of medical experts. The model is trained on a large corpus of simulated expert disease reasoning data, synthesized using a novel approach that accurately captures the decision-making pathways of clinicians. This approach enables Citrus to better simulate the complex reasoning processes involved in diagnosing and treating medical conditions. To further address the lack of publicly available datasets for medical reasoning tasks, we release the last-stage training data, including a custom-built medical diagnostic dialogue dataset. This open-source contribution aims to support further research and development in the field. Evaluations using authoritative benchmarks such as MedQA, covering tasks in medical reasoning and language understanding, show that Citrus achieves superior performance compared to other models of similar size. These results highlight Citrus potential to significantly enhance medical decision support systems, providing a more accurate and efficient tool for clinical decision-making.


Sampling-based Continuous Optimization with Coupled Variables for RNA Design

arXiv.org Artificial Intelligence

The task of RNA design given a target structure aims to find a sequence that can fold into that structure. It is a computationally hard problem where some version(s) have been proven to be NP-hard. As a result, heuristic methods such as local search have been popular for this task, but by only exploring a fixed number of candidates. They can not keep up with the exponential growth of the design space, and often perform poorly on longer and harder-to-design structures. We instead formulate these discrete problems as continuous optimization, which starts with a distribution over all possible candidate sequences, and uses gradient descent to improve the expectation of an objective function. We define novel distributions based on coupled variables to rule out invalid sequences given the target structure and to model the correlation between nucleotides. To make it universally applicable to any objective function, we use sampling to approximate the expected objective function, to estimate the gradient, and to select the final candidate. Compared to the state-of-the-art methods, our work consistently outperforms them in key metrics such as Boltzmann probability, ensemble defect, and energy gap, especially on long and hard-to-design puzzles in the Eterna100 benchmark. Our code is available at: http://github.com/weiyutang1010/ncrna_design.


Process Supervision-Guided Policy Optimization for Code Generation

arXiv.org Artificial Intelligence

Reinforcement Learning (RL) with unit test feedback has enhanced large language models (LLMs) code generation, but relies on sparse rewards provided only after complete code evaluation, limiting learning efficiency and incremental improvements. When generated code fails all unit tests, no learning signal is received, hindering progress on complex tasks. To address this, we propose a Process Reward Model (PRM) that delivers dense, line-level feedback on code correctness during generation, mimicking human code refinement and providing immediate guidance. We explore various strategies for training PRMs and integrating them into the RL framework, finding that using PRMs both as dense rewards and for value function initialization significantly boosts performance. Our approach increases our in-house LLM's pass rate from 28.2% to 29.8% on LiveCodeBench and from 31.8% to 35.8% on our internal benchmark. Our experimental results highlight the effectiveness of PRMs in enhancing RL-driven code generation, especially for long-horizon scenarios.


Messenger and Non-Coding RNA Design via Expected Partition Function and Continuous Optimization

arXiv.org Artificial Intelligence

The tasks of designing messenger RNAs and non-coding RNAs are discrete optimization problems, and several versions of these problems are NP-hard. As an alternative to commonly used local search methods, we formulate these problems as continuous optimization and develop a general framework for this optimization based on a new concept of "expected partition function". The basic idea is to start with a distribution over all possible candidate sequences, and extend the objective function from a sequence to a distribution. We then use gradient descent-based optimization methods to improve the extended objective function, and the distribution will gradually shrink towards a one-hot sequence (i.e., a single sequence). We consider two important case studies within this framework, the mRNA design problem optimizing for partition function (i.e., ensemble free energy) and the non-coding RNA design problem optimizing for conditional (i.e., Boltzmann) probability. In both cases, our approach demonstrate promising preliminary results.


ERNIE-SAT: Speech and Text Joint Pretraining for Cross-Lingual Multi-Speaker Text-to-Speech

arXiv.org Artificial Intelligence

Speech representation learning has improved both speech understanding and speech synthesis tasks for single language. However, its ability in cross-lingual scenarios has not been explored. In this paper, we extend the pretraining method for cross-lingual multi-speaker speech synthesis tasks, including cross-lingual multi-speaker voice cloning and cross-lingual multi-speaker speech editing. We propose a speech-text joint pretraining framework, where we randomly mask the spectrogram and the phonemes given a speech example and its transcription. By learning to reconstruct the masked parts of the input in different languages, our model shows great improvements over speaker-embedding-based multi-speaker TTS methods. Moreover, our framework is end-to-end for both the training and the inference without any finetuning effort. In cross-lingual multi-speaker voice cloning and cross-lingual multi-speaker speech editing tasks, our experiments show that our model outperforms speaker-embedding-based multi-speaker TTS methods.


Computation Rate Maximum for Mobile Terminals in UAV-assisted Wireless Powered MEC Networks with Fairness Constraint

arXiv.org Artificial Intelligence

This paper investigates an unmanned aerial vehicle (UAV)-assisted wireless powered mobile-edge computing (MEC) system, where the UAV powers the mobile terminals by wireless power transfer (WPT) and provides computation service for them. We aim to maximize the computation rate of terminals while ensuring fairness among them. Considering the random trajectories of mobile terminals, we propose a soft actor-critic (SAC)-based UAV trajectory planning and resource allocation (SAC-TR) algorithm, which combines off-policy and maximum entropy reinforcement learning to promote the convergence of the algorithm. We design the reward as a heterogeneous function of computation rate, fairness, and reaching of destination. Simulation results show that SAC-TR can quickly adapt to varying network environments and outperform representative benchmarks in a variety of situations.


Fluent and Low-latency Simultaneous Speech-to-Speech Translation with Self-adaptive Training

arXiv.org Artificial Intelligence

Simultaneous speech-to-speech translation is widely useful but extremely challenging, since it needs to generate target-language speech concurrently with the source-language speech, with only a few seconds delay. In addition, it needs to continuously translate a stream of sentences, but all recent solutions merely focus on the single-sentence scenario. As a result, current approaches accumulate latencies progressively when the speaker talks faster, and introduce unnatural pauses when the speaker talks slower. To overcome these issues, we propose Self-Adaptive Translation (SAT) which flexibly adjusts the length of translations to accommodate different source speech rates. At similar levels of translation quality (as measured by BLEU), our method generates more fluent target speech (as measured by the naturalness metric MOS) with substantially lower latency than the baseline, in both Zh <-> En directions.


Speeding Up Neural Machine Translation Decoding by Cube Pruning

arXiv.org Artificial Intelligence

Although neural machine translation has achieved promising results, it suffers from slow translation speed. The direct consequence is that a trade-off has to be made between translation quality and speed, thus its performance can not come into full play. We apply cube pruning, a popular technique to speed up dynamic programming, into neural machine translation to speed up the translation. To construct the equivalence class, similar target hidden states are combined, leading to less RNN expansion operations on the target side and less \$\mathrm{softmax}\$ operations over the large target vocabulary. The experiments show that, at the same or even better translation quality, our method can translate faster compared with naive beam search by \$3.3\times\$ on GPUs and \$3.5\times\$ on CPUs.


Dependency-based Convolutional Neural Networks for Sentence Embedding

arXiv.org Artificial Intelligence

In sentence modeling and classification, convolutional neural network approaches have recently achieved state-of-the-art results, but all such efforts process word vectors sequentially and neglect long-distance dependencies. To exploit both deep learning and linguistic structures, we propose a tree-based convolutional neural network model which exploit various long-distance relationships between words. Our model improves the sequential baselines on all three sentiment and question classification tasks, and achieves the highest published accuracy on TREC.