Goto

Collaborating Authors

 Hu, Yuhan


Breaking the Pre-Planning Barrier: Real-Time Adaptive Coordination of Mission and Charging UAVs Using Graph Reinforcement Learning

arXiv.org Artificial Intelligence

Unmanned Aerial Vehicles (UAVs) are pivotal in applications such as search and rescue and environmental monitoring, excelling in intelligent perception tasks. However, their limited battery capacity hinders long-duration and long-distance missions. Charging UAVs (CUAVs) offers a potential solution by recharging mission UAVs (MUAVs), but existing methods rely on impractical pre-planned routes, failing to enable organic cooperation and limiting mission efficiency. We introduce a novel multi-agent deep reinforcement learning model named \textbf{H}eterogeneous \textbf{G}raph \textbf{A}ttention \textbf{M}ulti-agent Deep Deterministic Policy Gradient (HGAM), designed to dynamically coordinate MUAVs and CUAVs. This approach maximizes data collection, geographical fairness, and energy efficiency by allowing UAVs to adapt their routes in real-time to current task demands and environmental conditions without pre-planning. Our model uses heterogeneous graph attention networks (GATs) to present heterogeneous agents and facilitate efficient information exchange. It operates within an actor-critic framework. Simulation results show that our model significantly improves cooperation among heterogeneous UAVs, outperforming existing methods in several metrics, including data collection rate and charging efficiency.


ELEGNT: Expressive and Functional Movement Design for Non-anthropomorphic Robot

arXiv.org Artificial Intelligence

Nonverbal behaviors such as posture, gestures, and gaze are essential for conveying internal states, both consciously and unconsciously, in human interaction. For robots to interact more naturally with humans, robot movement design should likewise integrate expressive qualities, such as intention, attention, and emotions, alongside traditional functional considerations like task fulfillment and time efficiency. In this paper, we present the design and prototyping of a lamp-like robot that explores the interplay between functional and expressive objectives in movement design. Using a research-through-design methodology, we document the hardware design process, define expressive movement primitives, and outline a set of interaction scenario storyboards. We propose a framework that incorporates both functional and expressive utilities during movement generation, and implement the robot behavior sequences in different function- and social- oriented tasks. Through a user study comparing expression-driven versus function-driven movements across six task scenarios, our findings indicate that expression-driven movements significantly enhance user engagement and perceived robot qualities. This effect is especially pronounced in social-oriented tasks.


EMOTION: Expressive Motion Sequence Generation for Humanoid Robots with In-Context Learning

arXiv.org Artificial Intelligence

This paper introduces a framework, called EMOTION, for generating expressive motion sequences in humanoid robots, enhancing their ability to engage in humanlike non-verbal communication. Non-verbal cues such as facial expressions, gestures, and body movements play a crucial role in effective interpersonal interactions. Despite the advancements in robotic behaviors, existing methods often fall short in mimicking the diversity and subtlety of human non-verbal communication. To address this gap, our approach leverages the in-context learning capability of large language models (LLMs) to dynamically generate socially appropriate gesture motion sequences for human-robot interaction. We use this framework to generate 10 different expressive gestures and conduct online user studies comparing the naturalness and understandability of the motions generated by EMOTION and its human-feedback version, EMOTION++, against those by human operators. The results demonstrate that our approach either matches or surpasses human performance in generating understandable and natural robot motions under certain scenarios. We also provide design implications for future research to consider a set of variables when generating expressive robotic gestures.