Goto

Collaborating Authors

 Hu, Ping


Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding

arXiv.org Artificial Intelligence

Injecting semantics into 3D Gaussian Splatting (3DGS) has recently garnered significant attention. While current approaches typically distill 3D semantic features from 2D foundational models (e.g., CLIP and SAM) to facilitate novel view segmentation and semantic understanding, their heavy reliance on 2D supervision can undermine cross-view semantic consistency and necessitate complex data preparation processes, therefore hindering view-consistent scene understanding. In this work, we present FreeGS, an unsupervised semantic-embedded 3DGS framework that achieves view-consistent 3D scene understanding without the need for 2D labels. Instead of directly learning semantic features, we introduce the IDentity-coupled Semantic Field (IDSF) into 3DGS, which captures both semantic representations and view-consistent instance indices for each Gaussian. We optimize IDSF with a two-step alternating strategy: semantics help to extract coherent instances in 3D space, while the resulting instances regularize the injection of stable semantics from 2D space. Additionally, we adopt a 2D-3D joint contrastive loss to enhance the complementarity between view-consistent 3D geometry and rich semantics during the bootstrapping process, enabling FreeGS to uniformly perform tasks such as novel-view semantic segmentation, object selection, and 3D object detection. Extensive experiments on LERF-Mask, 3D-OVS, and ScanNet datasets demonstrate that FreeGS performs comparably to state-of-the-art methods while avoiding the complex data preprocessing workload.


Noisy Node Classification by Bi-level Optimization based Multi-teacher Distillation

arXiv.org Artificial Intelligence

Previous graph neural networks (GNNs) usually assume that the graph data is with clean labels for representation learning, but it is not true in real applications. In this paper, we propose a new multi-teacher distillation method based on bi-level optimization (namely BO-NNC), to conduct noisy node classification on the graph data. Specifically, we first employ multiple self-supervised learning methods to train diverse teacher models, and then aggregate their predictions through a teacher weight matrix. Furthermore, we design a new bi-level optimization strategy to dynamically adjust the teacher weight matrix based on the training progress of the student model. Finally, we design a label improvement module to improve the label quality. Extensive experimental results on real datasets show that our method achieves the best results compared to state-of-the-art methods.


Deep Generative Modeling for Financial Time Series with Application in VaR: A Comparative Review

arXiv.org Artificial Intelligence

In the financial services industry, forecasting the risk factor distribution conditional on the history and the current market environment is the key to market risk modeling in general and value at risk (VaR) model in particular. As one of the most widely adopted VaR models in commercial banks, Historical simulation (HS) uses the empirical distribution of daily returns in a historical window as the forecast distribution of risk factor returns in the next day. The objectives for financial time series generation are to generate synthetic data paths with good variety, and similar distribution and dynamics to the original historical data. In this paper, we apply multiple existing deep generative methods (e.g., CGAN, CWGAN, Diffusion, and Signature WGAN) for conditional time series generation, and propose and test two new methods for conditional multi-step time series generation, namely Encoder-Decoder CGAN and Conditional TimeVAE. Furthermore, we introduce a comprehensive framework with a set of KPIs to measure the quality of the generated time series for financial modeling. The KPIs cover distribution distance, autocorrelation and backtesting. All models (HS, parametric and neural networks) are tested on both historical USD yield curve data and additional data simulated from GARCH and CIR processes. The study shows that top performing models are HS, GARCH and CWGAN models. Future research directions in this area are also discussed.


DualCoOp++: Fast and Effective Adaptation to Multi-Label Recognition with Limited Annotations

arXiv.org Artificial Intelligence

Multi-label image recognition in the low-label regime is a task of great challenge and practical significance. Previous works have focused on learning the alignment between textual and visual spaces to compensate for limited image labels, yet may suffer from reduced accuracy due to the scarcity of high-quality multi-label annotations. In this research, we leverage the powerful alignment between textual and visual features pretrained with millions of auxiliary image-text pairs. We introduce an efficient and effective framework called Evidence-guided Dual Context Optimization (DualCoOp++), which serves as a unified approach for addressing partial-label and zero-shot multi-label recognition. In DualCoOp++ we separately encode evidential, positive, and negative contexts for target classes as parametric components of the linguistic input (i.e., prompts). The evidential context aims to discover all the related visual content for the target class, and serves as guidance to aggregate positive and negative contexts from the spatial domain of the image, enabling better distinguishment between similar categories. Additionally, we introduce a Winner-Take-All module that promotes inter-class interaction during training, while avoiding the need for extra parameters and costs. As DualCoOp++ imposes minimal additional learnable overhead on the pretrained vision-language framework, it enables rapid adaptation to multi-label recognition tasks with limited annotations and even unseen classes. Experiments on standard multi-label recognition benchmarks across two challenging low-label settings demonstrate the superior performance of our approach compared to state-of-the-art methods.


Adaptive Multi-Modality Prompt Learning

arXiv.org Artificial Intelligence

Although current prompt learning methods have successfully been designed to effectively reuse the large pre-trained models without fine-tuning their large number of parameters, they still have limitations to be addressed, i.e., without considering the adverse impact of meaningless patches in every image and without simultaneously considering in-sample generalization and out-of-sample generalization. In this paper, we propose an adaptive multi-modality prompt learning to address the above issues. To do this, we employ previous text prompt learning and propose a new image prompt learning. The image prompt learning achieves in-sample and out-of-sample generalization, by first masking meaningless patches and then padding them with the learnable parameters and the information from texts. Moreover, each of the prompts provides auxiliary information to each other, further strengthening these two kinds of generalization. Experimental results on real datasets demonstrate that our method outperforms SOTA methods, in terms of different downstream tasks.


Non-Asymptotic Performance of Social Machine Learning Under Limited Data

arXiv.org Artificial Intelligence

This paper studies the probability of error associated with the social machine learning framework, which involves an independent training phase followed by a cooperative decision-making phase over a graph. This framework addresses the problem of classifying a stream of unlabeled data in a distributed manner. We consider two kinds of classification tasks with limited observations in the prediction phase, namely, the statistical classification task and the single-sample classification task. For each task, we describe the distributed learning rule and analyze the probability of error accordingly. To do so, we first introduce a stronger consistent training condition that involves the margin distributions generated by the trained classifiers. Based on this condition, we derive an upper bound on the probability of error for both tasks, which depends on the statistical properties of the data and the combination policy used to combine the distributed classifiers. For the statistical classification problem, we employ the geometric social learning rule and conduct a non-asymptotic performance analysis. An exponential decay of the probability of error with respect to the number of unlabeled samples is observed in the upper bound. For the single-sample classification task, a distributed learning rule that functions as an ensemble classifier is constructed. An upper bound on the probability of error of this ensemble classifier is established.


Optimal Aggregation Strategies for Social Learning over Graphs

arXiv.org Artificial Intelligence

Adaptive social learning is a useful tool for studying distributed decision-making problems over graphs. This paper investigates the effect of combination policies on the performance of adaptive social learning strategies. Using large-deviation analysis, it first derives a bound on the steady-state error probability and characterizes the optimal selection for the Perron eigenvectors of the combination policies. It subsequently studies the effect of the combination policy on the transient behavior of the learning strategy by estimating the adaptation time in the low signal-to-noise ratio regime. In the process, it is discovered that, interestingly, the influence of the combination policy on the transient behavior is insignificant, and thus it is more critical to employ policies that enhance the steady-state performance. The theoretical conclusions are illustrated by means of computer simulations.