He, Bin
Kaiwu: A Multimodal Manipulation Dataset and Framework for Robot Learning and Human-Robot Interaction
Jiang, Shuo, Li, Haonan, Ren, Ruochen, Zhou, Yanmin, Wang, Zhipeng, He, Bin
Cutting-edge robot learning techniques including foundation models and imitation learning from humans all pose huge demands on large-scale and high-quality datasets which constitute one of the bottleneck in the general intelligent robot fields. This paper presents the Kaiwu multimodal dataset to address the missing real-world synchronized multimodal data problems in the sophisticated assembling scenario,especially with dynamics information and its fine-grained labelling. The dataset first provides an integration of human,environment and robot data collection framework with 20 subjects and 30 interaction objects resulting in totally 11,664 instances of integrated actions. For each of the demonstration,hand motions,operation pressures,sounds of the assembling process,multi-view videos, high-precision motion capture information,eye gaze with first-person videos,electromyography signals are all recorded. Fine-grained multi-level annotation based on absolute timestamp,and semantic segmentation labelling are performed. Kaiwu dataset aims to facilitate robot learning,dexterous manipulation,human intention investigation and human-robot collaboration research.
PAGNet: Pluggable Adaptive Generative Networks for Information Completion in Multi-Agent Communication
Zhang, Zhuohui, Cheng, Bin, Wang, Zhipeng, Zhou, Yanmin, Li, Gang, Lu, Ping, He, Bin, Chen, Jie
For partially observable cooperative tasks, multi-agent systems must develop effective communication and understand the interplay among agents in order to achieve cooperative goals. However, existing multi-agent reinforcement learning (MARL) with communication methods lack evaluation metrics for information weights and information-level communication modeling. This causes agents to neglect the aggregation of multiple messages, thereby significantly reducing policy learning efficiency. In this paper, we propose pluggable adaptive generative networks (PAGNet), a novel framework that integrates generative models into MARL to enhance communication and decision-making. PAGNet enables agents to synthesize global states representations from weighted local observations and use these representations alongside learned communication weights for coordinated decision-making. This pluggable approach reduces the computational demands typically associated with the joint training of communication and policy networks. Extensive experimental evaluations across diverse benchmarks and communication scenarios demonstrate the significant performance improvements achieved by PAGNet. Furthermore, we analyze the emergent communication patterns and the quality of generated global states, providing insights into operational mechanisms.
Can video generation replace cinematographers? Research on the cinematic language of generated video
Li, Xiaozhe, WU, Kai, Yang, Siyi, Qu, YiZhan, Zhang, Guohua., Chen, Zhiyu, Li, Jiayao, Mu, Jiangchuan, Hu, Xiaobin, Fang, Wen, Xiong, Mingliang, Deng, Hao, Liu, Qingwen, Li, Gang, He, Bin
Recent advancements in text-to-video (T2V) generation have leveraged diffusion models to enhance the visual coherence of videos generated from textual descriptions. However, most research has primarily focused on object motion, with limited attention given to cinematic language in videos, which is crucial for cinematographers to convey emotion and narrative pacing. To address this limitation, we propose a threefold approach to enhance the ability of T2V models to generate controllable cinematic language. Specifically, we introduce a cinematic language dataset that encompasses shot framing, angle, and camera movement, enabling models to learn diverse cinematic styles. Building on this, to facilitate robust cinematic alignment evaluation, we present CameraCLIP, a model fine-tuned on the proposed dataset that excels in understanding complex cinematic language in generated videos and can further provide valuable guidance in the multi-shot composition process. Finally, we propose CLIPLoRA, a cost-guided dynamic LoRA composition method that facilitates smooth transitions and realistic blending of cinematic language by dynamically fusing multiple pre-trained cinematic LoRAs within a single video. Our experiments demonstrate that CameraCLIP outperforms existing models in assessing the alignment between cinematic language and video, achieving an R@1 score of 0.81. Additionally, CLIPLoRA improves the ability for multi-shot composition, potentially bridging the gap between automatically generated videos and those shot by professional cinematographers.
SSFold: Learning to Fold Arbitrary Crumpled Cloth Using Graph Dynamics from Human Demonstration
Zhou, Changshi, Xu, Haichuan, Hu, Jiarui, Luan, Feng, Wang, Zhipeng, Dong, Yanchao, Zhou, Yanmin, He, Bin
Robotic cloth manipulation faces challenges due to the fabric's complex dynamics and the high dimensionality of configuration spaces. Previous methods have largely focused on isolated smoothing or folding tasks and overly reliant on simulations, often failing to bridge the significant sim-to-real gap in deformable object manipulation. To overcome these challenges, we propose a two-stream architecture with sequential and spatial pathways, unifying smoothing and folding tasks into a single adaptable policy model that accommodates various cloth types and states. The sequential stream determines the pick and place positions for the cloth, while the spatial stream, using a connectivity dynamics model, constructs a visibility graph from partial point cloud data of the self-occluded cloth, allowing the robot to infer the cloth's full configuration from incomplete observations. To bridge the sim-to-real gap, we utilize a hand tracking detection algorithm to gather and integrate human demonstration data into our novel end-to-end neural network, improving real-world adaptability. Our method, validated on a UR5 robot across four distinct cloth folding tasks with different goal shapes, consistently achieves folded states from arbitrary crumpled initial configurations, with success rates of 99\%, 99\%, 83\%, and 67\%. It outperforms existing state-of-the-art cloth manipulation techniques and demonstrates strong generalization to unseen cloth with diverse colors, shapes, and stiffness in real-world experiments.Videos and source code are available at: https://zcswdt.github.io/SSFold/
Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions
Javaid, Shumaila, Khalil, Ruhul Amin, Saeed, Nasir, He, Bin, Alouini, Mohamed-Slim
Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies to ensure seamless connectivity across different altitudes and platforms. This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs, leveraging advanced Artificial Intelligence (AI) and Machine Learning (ML) capabilities to enhance these networks. We outline the current architecture of ISATNs and highlight the significant role LLMs can play in optimizing data flow, signal processing, and network management to advance 5G/6G communication technologies through advanced predictive algorithms and real-time decision-making. A comprehensive analysis of ISATN components is conducted, assessing how LLMs can effectively address traditional data transmission and processing bottlenecks. The paper delves into the network management challenges within ISATNs, emphasizing the necessity for sophisticated resource allocation strategies, traffic routing, and security management to ensure seamless connectivity and optimal performance under varying conditions. Furthermore, we examine the technical challenges and limitations associated with integrating LLMs into ISATNs, such as data integration for LLM processing, scalability issues, latency in decision-making processes, and the design of robust, fault-tolerant systems. The study also identifies key future research directions for fully harnessing LLM capabilities in ISATNs, which is crucial for enhancing network reliability, optimizing performance, and achieving a truly interconnected and intelligent global network system.
Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs
Qi, Yong, Kyebambo, Gabriel, Xie, Siyuan, Shen, Wei, Wang, Shenghui, Xie, Bitao, He, Bin, Wang, Zhipeng, Jiang, Shuo
Safety limitations in service robotics across various industries have raised significant concerns about the need for robust mechanisms ensuring that robots adhere to safe practices, thereby preventing actions that might harm humans or cause property damage. Despite advances, including the integration of Knowledge Graphs (KGs) with Large Language Models (LLMs), challenges in ensuring consistent safety in autonomous robot actions persist. In this paper, we propose a novel integration of Large Language Models with Embodied Robotic Control Prompts (ERCPs) and Embodied Knowledge Graphs (EKGs) to enhance the safety framework for service robots. ERCPs are designed as predefined instructions that ensure LLMs generate safe and precise responses. These responses are subsequently validated by EKGs, which provide a comprehensive knowledge base ensuring that the actions of the robot are continuously aligned with safety protocols, thereby promoting safer operational practices in varied contexts. Our experimental setup involved diverse real-world tasks, where robots equipped with our framework demonstrated significantly higher compliance with safety standards compared to traditional methods. This integration fosters secure human-robot interactions and positions our methodology at the forefront of AI-driven safety innovations in service robotics.
Large Language Models for UAVs: Current State and Pathways to the Future
Javaid, Shumaila, Saeed, Nasir, He, Bin
Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors, offering adaptable solutions to complex challenges in both military and civilian domains. Their expanding capabilities present a platform for further advancement by integrating cutting-edge computational tools like Artificial Intelligence (AI) and Machine Learning (ML) algorithms. These advancements have significantly impacted various facets of human life, fostering an era of unparalleled efficiency and convenience. Large Language Models (LLMs), a key component of AI, exhibit remarkable learning and adaptation capabilities within deployed environments, demonstrating an evolving form of intelligence with the potential to approach human-level proficiency. This work explores the significant potential of integrating UAVs and LLMs to propel the development of autonomous systems. We comprehensively review LLM architectures, evaluating their suitability for UAV integration. Additionally, we summarize the state-of-the-art LLM-based UAV architectures and identify novel opportunities for LLM embedding within UAV frameworks. Notably, we focus on leveraging LLMs to refine data analysis and decision-making processes, specifically for enhanced spectral sensing and sharing in UAV applications. Furthermore, we investigate how LLM integration expands the scope of existing UAV applications, enabling autonomous data processing, improved decision-making, and faster response times in emergency scenarios like disaster response and network restoration. Finally, we highlight crucial areas for future research that are critical for facilitating the effective integration of LLMs and UAVs.
A Survey on Robotic Manipulation of Deformable Objects: Recent Advances, Open Challenges and New Frontiers
Gu, Feida, Zhou, Yanmin, Wang, Zhipeng, Jiang, Shuo, He, Bin
Deformable object manipulation (DOM) for robots has a wide range of applications in various fields such as industrial, service and health care sectors. However, compared to manipulation of rigid objects, DOM poses significant challenges for robotic perception, modeling and manipulation, due to the infinite dimensionality of the state space of deformable objects (DOs) and the complexity of their dynamics. The development of computer graphics and machine learning has enabled novel techniques for DOM. These techniques, based on data-driven paradigms, can address some of the challenges that analytical approaches of DOM face. However, some existing reviews do not include all aspects of DOM, and some previous reviews do not summarize data-driven approaches adequately. In this article, we survey more than 150 relevant studies (data-driven approaches mainly) and summarize recent advances, open challenges, and new frontiers for aspects of perception, modeling and manipulation for DOs. Particularly, we summarize initial progress made by Large Language Models (LLMs) in robotic manipulation, and indicates some valuable directions for further research. We believe that integrating data-driven approaches and analytical approaches can provide viable solutions to open challenges of DOM.
Robot Learning in the Era of Foundation Models: A Survey
Xiao, Xuan, Liu, Jiahang, Wang, Zhipeng, Zhou, Yanmin, Qi, Yong, Cheng, Qian, He, Bin, Jiang, Shuo
The proliferation of Large Language Models (LLMs) has s fueled a shift in robot learning from automation towards general embodied Artificial Intelligence (AI). Adopting foundation models together with traditional learning methods to robot learning has increasingly gained recent interest research community and showed potential for real-life application. However, there are few literatures comprehensively reviewing the relatively new technologies combined with robotics. The purpose of this review is to systematically assess the state-of-the-art foundation model techniques in the robot learning and to identify future potential areas. Specifically, we first summarized the technical evolution of robot learning and identified the necessary preliminary preparations for foundation models including the simulators, datasets, foundation model framework. In addition, we focused on the following four mainstream areas of robot learning including manipulation, navigation, planning, and reasoning and demonstrated how the foundation model techniques can be adopted in the above scenarios. Furthermore, critical issues which are neglected in the current literatures including robot hardware and software decoupling, dynamic data, generalization performance with the presence of human, etc. were discussed. This review highlights the state-of-the-art progress of foundation models in robot learning and future research should focus on multimodal interaction especially dynamics data, exclusive foundation models for robots, and AI alignment, etc.
Implementation of The Future of Drug Discovery: QuantumBased Machine Learning Simulation (QMLS)
Zhou, Yifan, Wong, Yew Kee, Liang, Yan Shing, Qiu, Haichuan, Wu, Yu Xi, He, Bin
The Research & Development (R&D) phase of drug development is a lengthy and costly process. To revolutionize this process, we introduce our new concept QMLS to shorten the whole R&D phase to three to six months and decrease the cost to merely fifty to eighty thousand USD. For Hit Generation, Machine Learning Molecule Generation (MLMG) generates possible hits according to the molecular structure of the target protein while the Quantum Simulation (QS) filters molecules from the primary essay based on the reaction and binding effectiveness with the target protein. Then, For Lead Optimization, the resultant molecules generated and filtered from MLMG and QS are compared, and molecules that appear as a result of both processes will be made into dozens of molecular variations through Machine Learning Molecule Variation (MLMV), while others will only be made into a few variations. Lastly, all optimized molecules would undergo multiple rounds of QS filtering with a high standard for reaction effectiveness and safety, creating a few dozen pre-clinical-trail-ready drugs. This paper is based on our first paper, where we pitched the concept of machine learning combined with quantum simulations. In this paper we will go over the detailed design and framework of QMLS, including MLMG, MLMV, and QS.