Plotting

 Hazan, Elad


A New Approach to Controlling Linear Dynamical Systems

arXiv.org Machine Learning

We propose a new method for controlling linear dynamical systems under adversarial disturbances and cost functions. Our algorithm achieves a running time that scales polylogarithmically with the inverse of the stability margin, improving upon prior methods with polynomial dependence maintaining the same regret guarantees. The technique, which may be of independent interest, is based on a novel convex relaxation that approximates linear control policies using spectral filters constructed from the eigenvectors of a specific Hankel matrix.


Dimension-free Regret for Learning Asymmetric Linear Dynamical Systems

arXiv.org Machine Learning

Previously, methods for learning marginally stable linear dynamical systems either required the transition matrix to be symmetric or incurred regret bounds that scale polynomially with the system's hidden dimension. In this work, we introduce a novel method that overcomes this trade-off, achieving dimension-free regret despite the presence of asymmetric matrices and marginal stability. Our method combines spectral filtering with linear predictors and employs Chebyshev polynomials in the complex plane to construct a novel spectral filtering basis. This construction guarantees sublinear regret in an online learning framework, without relying on any statistical or generative assumptions. Specifically, we prove that as long as the transition matrix has eigenvalues with complex component bounded by $1/\mathrm{poly} \log T$, then our method achieves regret $\tilde{O}(T^{9/10})$ when compared to the best linear dynamical predictor in hindsight.


Provable Length Generalization in Sequence Prediction via Spectral Filtering

arXiv.org Artificial Intelligence

Sequence prediction is a fundamental problem in machine learning with widespread applications in natural language processing, time-series forecasting, and control systems. In this setting, a learner observes a sequence of tokens and iteratively predicts the next token, suffering a loss that measures the discrepancy between the predicted and the true token. Predicting future elements of a sequence based on historical data is crucial for tasks ranging from language modeling to autonomous control. A key challenge in sequence prediction is understanding the role of context length--the number of previous tokens used to make the upcoming prediction--and designing predictors that perform well with limited context due to computational and memory constraints. These resource constraints become particularly significant during the training phase of a predictor, where the computational cost of using long sequences can be prohibitive. Consequently, it is beneficial to design predictors that can learn from a smaller context length while still generalizing well to longer sequences. This leads us to the central question of our investigation: Can we develop algorithms that learn effectively using short contexts but perform comparably to models that use longer contexts?


FutureFill: Fast Generation from Convolutional Sequence Models

arXiv.org Artificial Intelligence

We address the challenge of efficient auto-regressive generation in sequence prediction models by introducing FutureFill - a method for fast generation that applies to any sequence prediction algorithm based on convolutional operators. Our approach reduces the generation time requirement from quadratic to quasilinear relative to the context length. Additionally, FutureFill requires a prefill cache sized only by the number of tokens generated, which is smaller than the cache requirements for standard convolutional and attention-based models. We validate our theoretical findings with experimental evidence demonstrating correctness and efficiency gains in a synthetic generation task.


Online Control in Population Dynamics

arXiv.org Machine Learning

The study of population dynamics originated with early sociological works but has since extended into many fields, including biology, epidemiology, evolutionary game theory, and economics. Most studies on population dynamics focus on the problem of prediction rather than control. Existing mathematical models for control in population dynamics are often restricted to specific, noise-free dynamics, while real-world population changes can be complex and adversarial. To address this gap, we propose a new framework based on the paradigm of online control. We first characterize a set of linear dynamical systems that can naturally model evolving populations. We then give an efficient gradient-based controller for these systems, with near-optimal regret bounds with respect to a broad class of linear policies. Our empirical evaluations demonstrate the effectiveness of the proposed algorithm for control in population dynamics even for non-linear models such as SIR and replicator dynamics.


Second Order Methods for Bandit Optimization and Control

arXiv.org Machine Learning

Bandit convex optimization (BCO) is a general framework for online decision making under uncertainty. While tight regret bounds for general convex losses have been established, existing algorithms achieving these bounds have prohibitive computational costs for high dimensional data. In this paper, we propose a simple and practical BCO algorithm inspired by the online Newton step algorithm. We show that our algorithm achieves optimal (in terms of horizon) regret bounds for a large class of convex functions that we call $\kappa$-convex. This class contains a wide range of practically relevant loss functions including linear, quadratic, and generalized linear models. In addition to optimal regret, this method is the most efficient known algorithm for several well-studied applications including bandit logistic regression. Furthermore, we investigate the adaptation of our second-order bandit algorithm to online convex optimization with memory. We show that for loss functions with a certain affine structure, the extended algorithm attains optimal regret. This leads to an algorithm with optimal regret for bandit LQR/LQG problems under a fully adversarial noise model, thereby resolving an open question posed in \citep{gradu2020non} and \citep{sun2023optimal}. Finally, we show that the more general problem of BCO with (non-affine) memory is harder. We derive a $\tilde{\Omega}(T^{2/3})$ regret lower bound, even under the assumption of smooth and quadratic losses.


Spectral State Space Models

arXiv.org Artificial Intelligence

This paper studies sequence modeling for prediction tasks with long range dependencies. We propose a new formulation for state space models (SSMs) based on learning linear dynamical systems with the spectral filtering algorithm (Hazan et al. (2017)). This gives rise to a novel sequence prediction architecture we call a spectral state space model. Spectral state space models have two primary advantages. First, they have provable robustness properties as their performance depends on neither the spectrum of the underlying dynamics nor the dimensionality of the problem. Second, these models are constructed with fixed convolutional filters that do not require learning while still outperforming SSMs in both theory and practice. The resulting models are evaluated on synthetic dynamical systems and long-range prediction tasks of various modalities. These evaluations support the theoretical benefits of spectral filtering for tasks requiring very long range memory.


Playing Large Games with Oracles and AI Debate

arXiv.org Artificial Intelligence

We consider regret minimization in repeated games with a very large number of actions. Such games are inherent in the setting of AI safety via debate, and more generally games whose actions are language-based. Existing algorithms for online game playing require computation polynomial in the number of actions, which can be prohibitive for large games. We thus consider oracle-based algorithms, as oracles naturally model access to AI agents. With oracle access, we characterize when internal and external regret can be minimized efficiently. We give a novel efficient algorithm for internal regret minimization whose regret and computation complexity depend logarithmically on the number of actions. This implies efficient oracle-based computation of a correlated equilibrium in large games. We conclude with experiments in the setting of AI Safety via Debate that shows the benefit of insights from our algorithmic analysis.


Adaptive Regret for Bandits Made Possible: Two Queries Suffice

arXiv.org Artificial Intelligence

Fast changing states or volatile environments pose a significant challenge to online optimization, which needs to perform rapid adaptation under limited observation. In this paper, we give query and regret optimal bandit algorithms under the strict notion of strongly adaptive regret, which measures the maximum regret over any contiguous interval $I$. Due to its worst-case nature, there is an almost-linear $\Omega(|I|^{1-\epsilon})$ regret lower bound, when only one query per round is allowed [Daniely el al, ICML 2015]. Surprisingly, with just two queries per round, we give Strongly Adaptive Bandit Learner (StABL) that achieves $\tilde{O}(\sqrt{n|I|})$ adaptive regret for multi-armed bandits with $n$ arms. The bound is tight and cannot be improved in general. Our algorithm leverages a multiplicative update scheme of varying stepsizes and a carefully chosen observation distribution to control the variance. Furthermore, we extend our results and provide optimal algorithms in the bandit convex optimization setting. Finally, we empirically demonstrate the superior performance of our algorithms under volatile environments and for downstream tasks, such as algorithm selection for hyperparameter optimization.


Chain of LoRA: Efficient Fine-tuning of Language Models via Residual Learning

arXiv.org Artificial Intelligence

Fine-tuning is the primary methodology for tailoring pre-trained large language models to specific tasks. As the model's scale and the diversity of tasks expand, parameter-efficient fine-tuning methods are of paramount importance. One of the most widely used family of methods is low-rank adaptation (LoRA) and its variants. LoRA encodes weight update as the product of two low-rank matrices. Despite its advantages, LoRA falls short of full-parameter fine-tuning in terms of generalization error for certain tasks. We introduce Chain of LoRA (COLA), an iterative optimization framework inspired by the Frank-Wolfe algorithm, to bridge the gap between LoRA and full parameter fine-tuning, without incurring additional computational costs or memory overheads. COLA employs a residual learning procedure where it merges learned LoRA modules into the pre-trained language model parameters and re-initilize optimization for new born LoRA modules. We provide theoretical convergence guarantees as well as empirical results to validate the effectiveness of our algorithm. Across various models (OPT and llama-2) and seven benchmarking tasks, we demonstrate that COLA can consistently outperform LoRA without additional computational or memory costs.