Goto

Collaborating Authors

 Harandi, Ali


A finite operator learning technique for mapping the elastic properties of microstructures to their mechanical deformations

arXiv.org Artificial Intelligence

To obtain fast solutions for governing physical equations in solid mechanics, we introduce a method that integrates the core ideas of the finite element method with physics-informed neural networks and concept of neural operators. This approach generalizes and enhances each method, learning the parametric solution for mechanical problems without relying on data from other resources (e.g. other numerical solvers). We propose directly utilizing the available discretized weak form in finite element packages to construct the loss functions algebraically, thereby demonstrating the ability to find solutions even in the presence of sharp discontinuities. Our focus is on micromechanics as an example, where knowledge of deformation and stress fields for a given heterogeneous microstructure is crucial for further design applications. The primary parameter under investigation is the Young's modulus distribution within the heterogeneous solid system. Our investigations reveal that physics-based training yields higher accuracy compared to purely data-driven approaches for unseen microstructures. Additionally, we offer two methods to directly improve the process of obtaining high-resolution solutions, avoiding the need to use basic interpolation techniques. First is based on an autoencoder approach to enhance the efficiency for calculation on high resolution grid point. Next, Fourier-based parametrization is utilized to address complex 2D and 3D problems in micromechanics. The latter idea aims to represent complex microstructures efficiently using Fourier coefficients. Comparisons with other well-known operator learning algorithms, further emphasize the advantages of the newly proposed method.


A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains

arXiv.org Artificial Intelligence

We propose a novel finite element-based physics-informed operator learning framework that allows for predicting spatiotemporal dynamics governed by partial differential equations (PDEs). The proposed framework employs a loss function inspired by the finite element method (FEM) with the implicit Euler time integration scheme. A transient thermal conduction problem is considered to benchmark the performance. The proposed operator learning framework takes a temperature field at the current time step as input and predicts a temperature field at the next time step. The Galerkin discretized weak formulation of the heat equation is employed to incorporate physics into the loss function, which is coined finite operator learning (FOL). Upon training, the networks successfully predict the temperature evolution over time for any initial temperature field at high accuracy compared to the FEM solution. The framework is also confirmed to be applicable to a heterogeneous thermal conductivity and arbitrary geometry. The advantages of FOL can be summarized as follows: First, the training is performed in an unsupervised manner, avoiding the need for a large data set prepared from costly simulations or experiments. Instead, random temperature patterns generated by the Gaussian random process and the Fourier series, combined with constant temperature fields, are used as training data to cover possible temperature cases. Second, shape functions and backward difference approximation are exploited for the domain discretization, resulting in a purely algebraic equation. This enhances training efficiency, as one avoids time-consuming automatic differentiation when optimizing weights and biases while accepting possible discretization errors. Finally, thanks to the interpolation power of FEM, any arbitrary geometry can be handled with FOL, which is crucial to addressing various engineering application scenarios.


Learning solution of nonlinear constitutive material models using physics-informed neural networks: COMM-PINN

arXiv.org Artificial Intelligence

We applied physics-informed neural networks to solve the constitutive relations for nonlinear, path-dependent material behavior. As a result, the trained network not only satisfies all thermodynamic constraints but also instantly provides information about the current material state (i.e., free energy, stress, and the evolution of internal variables) under any given loading scenario without requiring initial data. One advantage of this work is that it bypasses the repetitive Newton iterations needed to solve nonlinear equations in complex material models. Additionally, strategies are provided to reduce the required order of derivative for obtaining the tangent operator. The trained model can be directly used in any finite element package (or other numerical methods) as a user-defined material model. However, challenges remain in the proper definition of collocation points and in integrating several non-equality constraints that become active or non-active simultaneously. We tested this methodology on rate-independent processes such as the classical von Mises plasticity model with a nonlinear hardening law, as well as local damage models for interface cracking behavior with a nonlinear softening law. In order to demonstrate the applicability of the methodology in handling complex path dependency in a three-dimensional (3D) scenario, we tested the approach using the equations governing a damage model for a three-dimensional interface model. Such models are frequently employed for intergranular fracture at grain boundaries. We have observed a perfect agreement between the results obtained through the proposed methodology and those obtained using the classical approach. Furthermore, the proposed approach requires significantly less effort in terms of implementation and computing time compared to the traditional methods.


Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains

arXiv.org Artificial Intelligence

Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems by defining loss functions of neural networks based on governing equations, boundary conditions, and initial conditions. Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy, especially when there are heterogeneity and variable jumps in the domain. This new approach is called the mixed formulation for PINNs, which takes ideas from the mixed finite element method. In this method, the PDE is reformulated as a system of equations where the primary unknowns are the fluxes or gradients of the solution, and the secondary unknowns are the solution itself. In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations. Additionally, we discuss both sequential and fully coupled unsupervised training and compare their accuracy and computational cost. To improve the accuracy of the network, we incorporate hard boundary constraints to ensure valid predictions. We then investigate how different optimizers and architectures affect accuracy and efficiency. Finally, we introduce a simple approach for parametric learning that is similar to transfer learning. This approach combines data and physics to address the limitations of PINNs regarding computational cost and improves the network's ability to predict the response of the system for unseen cases. The outcomes of this work will be useful for many other engineering applications where deep learning is employed on multiple coupled systems of equations for fast and reliable computations.