Goto

Collaborating Authors

 Han, Zhichao


SEB-Naver: A SE(2)-based Local Navigation Framework for Car-like Robots on Uneven Terrain

arXiv.org Artificial Intelligence

Autonomous navigation of car-like robots on uneven terrain poses unique challenges compared to flat terrain, particularly in traversability assessment and terrain-associated kinematic modelling for motion planning. This paper introduces SEB-Naver, a novel SE(2)-based local navigation framework designed to overcome these challenges. First, we propose an efficient traversability assessment method for SE(2) grids, leveraging GPU parallel computing to enable real-time updates and maintenance of local maps. Second, inspired by differential flatness, we present an optimization-based trajectory planning method that integrates terrain-associated kinematic models, significantly improving both planning efficiency and trajectory quality. Finally, we unify these components into SEB-Naver, achieving real-time terrain assessment and trajectory optimization. Extensive simulations and real-world experiments demonstrate the effectiveness and efficiency of our approach. The code is at https://github.com/ZJU-FAST-Lab/seb_naver.


FLOAT Drone: A Fully-actuated Coaxial Aerial Robot for Close-Proximity Operations

arXiv.org Artificial Intelligence

How to endow aerial robots with the ability to operate in close proximity remains an open problem. The core challenges lie in the propulsion system's dual-task requirement: generating manipulation forces while simultaneously counteracting gravity. These competing demands create dynamic coupling effects during physical interactions. Furthermore, rotor-induced airflow disturbances critically undermine operational reliability. Although fully-actuated unmanned aerial vehicles (UAVs) alleviate dynamic coupling effects via six-degree-of-freedom (6-DoF) force-torque decoupling, existing implementations fail to address the aerodynamic interference between drones and environments. They also suffer from oversized designs, which compromise maneuverability and limit their applications in various operational scenarios. To address these limitations, we present FLOAT Drone (FuLly-actuated cOaxial Aerial roboT), a novel fully-actuated UAV featuring two key structural innovations. By integrating control surfaces into fully-actuated systems for the first time, we significantly suppress lateral airflow disturbances during operations. Furthermore, a coaxial dual-rotor configuration enables a compact size while maintaining high hovering efficiency. Through dynamic modeling, we have developed hierarchical position and attitude controllers that support both fully-actuated and underactuated modes. Experimental validation through comprehensive real-world experiments confirms the system's functional capabilities in close-proximity operations.


Tracailer: An Efficient Trajectory Planner for Tractor-Trailer Vehicles in Unstructured Environments

arXiv.org Artificial Intelligence

-- The tractor-trailer vehicle (robot) consists of a drivable tractor and one or more non-drivable trailers connected via hitches. Compared to typical car-like robots, the addition of trailers provides greater transportation capability. However, this also complicates motion planning due to the robot's complex kinematics, high-dimensional state space, and deformable structure. T o efficiently plan safe, time-optimal trajectories that adhere to the kinematic constraints of the robot and address the challenges posed by its unique features, this paper introduces a lightweight, compact, and high-order smooth trajectory representation for tractor-trailer robots. Based on it, we design an efficiently solvable spatio-temporal trajectory optimization problem. T o deal with deformable structures, which leads to difficulties in collision avoidance, we fully leverage the collision-free regions of the environment, directly applying deformations to trajectories in continuous space. This approach not requires constructing safe regions from the environment using convex approximations through collision-free seed points before each optimization, avoiding the loss of the solution space, thus reducing the dependency of the optimization on initial values. Moreover, a multi-terminal fast path search algorithm is proposed to generate the initial values for optimization. Extensive simulation experiments demonstrate that our approach achieves several-fold improvements in efficiency compared to existing algorithms, while also ensuring lower curvature and trajectory duration. I NTRODUCTION In recent years, autonomous driving has gained a lot of interest and great growth due to its potential social benefits. While when large cargoes need to be transported on the ground, people will turn their attention to tractor-trailer systems, such as semi-trucks, as they can carry more via trailers. Tractor-trailer robots are a class of vehicles consisting of a driveable tractor and many unpowered trailers.


Learning to Plan Maneuverable and Agile Flight Trajectory with Optimization Embedded Networks

arXiv.org Artificial Intelligence

In recent times, an increasing number of researchers have been devoted to utilizing deep neural networks for end-to-end flight navigation. This approach has gained traction due to its ability to bridge the gap between perception and planning that exists in traditional methods, thereby eliminating delays between modules. However, the practice of replacing original modules with neural networks in a black-box manner diminishes the overall system's robustness and stability. It lacks principled explanations and often fails to consistently generate high-quality motion trajectories. Furthermore, such methods often struggle to rigorously account for the robot's kinematic constraints, resulting in the generation of trajectories that cannot be executed satisfactorily. In this work, we combine the advantages of traditional methods and neural networks by proposing an optimization-embedded neural network. This network can learn high-quality trajectories directly from visual inputs without the need of mapping, while ensuring dynamic feasibility. Here, the deep neural network is employed to directly extract environment safety regions from depth images. Subsequently, we employ a model-based approach to represent these regions as safety constraints in trajectory optimization. Leveraging the availability of highly efficient optimization algorithms, our method robustly converges to feasible and optimal solutions that satisfy various user-defined constraints. Moreover, we differentiate the optimization process, allowing it to be trained as a layer within the neural network. This approach facilitates the direct interaction between perception and planning, enabling the network to focus more on the spatial regions where optimal solutions exist. As a result, it further enhances the quality and stability of the generated trajectories.


Fast Iterative Region Inflation for Computing Large 2-D/3-D Convex Regions of Obstacle-Free Space

arXiv.org Artificial Intelligence

Convex polytopes have compact representations and exhibit convexity, which makes them suitable for abstracting obstacle-free spaces from various environments. Existing methods for generating convex polytopes always struggle to strike a balance between two requirements, producing high-quality polytope and efficiency. Moreover, another crucial requirement for convex polytopes to accurately contain certain seed point sets, such as a robot or a front-end path, is proposed in various tasks, which we refer to as manageability. In this paper, we show that we can achieve generation of high-quality convex polytope while ensuring both efficiency and manageability simultaneously, by introducing Fast Iterative Regional Inflation (FIRI).FIRI consists of two iteratively executed submodules: Restrictive Inflation (RsI) and computation of the Maximum Volume Inscribed Ellipsoid (MVIE) of convex polytope. By explicitly incorporating constraints that include the seed point set, RsI guarantees manageability. Meanwhile, the iterative monotonic optimization of MVIE, which serves as a lower bound of the volume of convex polytope, ensures high-quality results of FIRI. In terms of efficiency, we design methods tailored to the low-dimensional and multi-constrained nature of both modules, resulting in orders of magnitude improvement compared to generic solvers. Notably, for 2-D MVIE, we present a novel analytical algorithm that achieves linear-time complexity for the first time, further enhancing the efficiency of FIRI in the 2-D scenario. Extensive benchmarks conducted against state-of-the-art methods validate the superior performance of FIRI in terms of quality, manageability, and efficiency. Furthermore, various real-world applications showcase the generality and practicality of FIRI. The high-performance code of FIRI will be open-sourced for the reference of the community.


Collective Relational Inference for learning heterogeneous interactions

arXiv.org Artificial Intelligence

Interacting systems are ubiquitous in nature and engineering, ranging from particle dynamics in physics to functionally connected brain regions. These interacting systems can be modeled by graphs where edges correspond to the interactions between interactive entities. Revealing interaction laws is of fundamental importance but also particularly challenging due to underlying configurational complexities. The associated challenges become exacerbated for heterogeneous systems that are prevalent in reality, where multiple interaction types coexist simultaneously and relational inference is required. Here, we propose a novel probabilistic method for relational inference, which possesses two distinctive characteristics compared to existing methods. First, it infers the interaction types of different edges collectively by explicitly encoding the correlation among incoming interactions with a joint distribution, and second, it allows handling systems with variable topological structure over time. We evaluate the proposed methodology across several benchmark datasets and demonstrate that it outperforms existing methods in accurately inferring interaction types. We further show that when combined with known constraints, it allows us, for example, to discover physics-consistent interaction laws of particle systems. Overall the proposed model is data-efficient and generalizable to large systems when trained on smaller ones. The developed methodology constitutes a key element for understanding interacting systems and may find application in graph structure learning.


Collaborative Planning for Catching and Transporting Objects in Unstructured Environments

arXiv.org Artificial Intelligence

Multi-robot teams have attracted attention from industry and academia for their ability to perform collaborative tasks in unstructured environments, such as wilderness rescue and collaborative transportation.In this paper, we propose a trajectory planning method for a non-holonomic robotic team with collaboration in unstructured environments.For the adaptive state collaboration of a robot team to catch and transport targets to be rescued using a net, we model the process of catching the falling target with a net in a continuous and differentiable form.This enables the robot team to fully exploit the kinematic potential, thereby adaptively catching the target in an appropriate state.Furthermore, the size safety and topological safety of the net, resulting from the collaborative support of the robots, are guaranteed through geometric constraints.We integrate our algorithm on a car-like robot team and test it in simulations and real-world experiments to validate our performance.Our method is compared to state-of-the-art multi-vehicle trajectory planning methods, demonstrating significant performance in efficiency and trajectory quality.


An Efficient Trajectory Planner for Car-like Robots on Uneven Terrain

arXiv.org Artificial Intelligence

Autonomous navigation of ground robots on uneven terrain is being considered in more and more tasks. However, uneven terrain will bring two problems to motion planning: how to assess the traversability of the terrain and how to cope with the dynamics model of the robot associated with the terrain. The trajectories generated by existing methods are often too conservative or cannot be tracked well by the controller since the second problem is not well solved. In this paper, we propose terrain pose mapping to describe the impact of terrain on the robot. With this mapping, we can obtain the SE(3) state of the robot on uneven terrain for a given state in SE(2). Then, based on it, we present a trajectory optimization framework for car-like robots on uneven terrain that can consider both of the above problems. The trajectories generated by our method conform to the dynamics model of the system without being overly conservative and yet able to be tracked well by the controller. We perform simulations and real-world experiments to validate the efficiency and trajectory quality of our algorithm.


BenchTemp: A General Benchmark for Evaluating Temporal Graph Neural Networks

arXiv.org Artificial Intelligence

To handle graphs in which features or connectivities are evolving over time, a series of temporal graph neural networks (TGNNs) have been proposed. Despite the success of these TGNNs, the previous TGNN evaluations reveal several limitations regarding four critical issues: 1) inconsistent datasets, 2) inconsistent evaluation pipelines, 3) lacking workload diversity, and 4) lacking efficient comparison. Overall, there lacks an empirical study that puts TGNN models onto the same ground and compares them comprehensively. To this end, we propose BenchTemp, a general benchmark for evaluating TGNN models on various workloads. BenchTemp provides a set of benchmark datasets so that different TGNN models can be fairly compared. Further, BenchTemp engineers a standard pipeline that unifies the TGNN evaluation. With BenchTemp, we extensively compare the representative TGNN models on different tasks (e.g., link prediction and node classification) and settings (transductive and inductive), w.r.t. both effectiveness and efficiency metrics. We have made BenchTemp publicly available at https://github.com/qianghuangwhu/benchtemp.


Decentralized Planning for Car-Like Robotic Swarm in Cluttered Environments

arXiv.org Artificial Intelligence

Robot swarm is a hot spot in robotic research community. In this paper, we propose a decentralized framework for car-like robotic swarm which is capable of real-time planning in cluttered environments. In this system, path finding is guided by environmental topology information to avoid frequent topological change, and search-based speed planning is leveraged to escape from infeasible initial value's local minima. Then spatial-temporal optimization is employed to generate a safe, smooth and dynamically feasible trajectory. During optimization, the trajectory is discretized by fixed time steps. Penalty is imposed on the signed distance between agents to realize collision avoidance, and differential flatness cooperated with limitation on front steer angle satisfies the non-holonomic constraints. With trajectories broadcast to the wireless network, agents are able to check and prevent potential collisions. We validate the robustness of our system in simulation and real-world experiments. Code will be released as open-source packages.