Hamm, Jihun
Dynamic Domains, Dynamic Solutions: DPCore for Continual Test-Time Adaptation
Zhang, Yunbei, Mehra, Akshay, Hamm, Jihun
Continual Test-Time Adaptation (TTA) seeks to adapt a source pre-trained model to continually changing, unlabeled target domains. Existing TTA methods are typically designed for environments where domain changes occur gradually and can struggle in more dynamic scenarios. Inspired by the principles of online K-Means, this paper introduces a novel approach to continual TTA through visual prompting. We propose a Dynamic Prompt Coreset that not only preserves knowledge from previously visited domains but also accommodates learning from new potential domains. This is complemented by a distance-based weight updating mechanism that ensures the coreset remains current and relevant. Our approach employs a fixed model architecture alongside the coreset and an innovative updating system to effectively mitigate challenges such as catastrophic forgetting and error accumulation. Extensive testing across various benchmarks-including ImageNet-C, CIFAR100-C, and CIFAR10-C-demonstrates that our method consistently outperforms state-of-the-art (SOTA) alternatives, particularly excelling in dynamically changing environments.
OT-VP: Optimal Transport-guided Visual Prompting for Test-Time Adaptation
Zhang, Yunbei, Mehra, Akshay, Hamm, Jihun
While Vision Transformers (ViTs) have demonstrated remarkable capabilities in learning representations, their performance is compromised when applied to unseen domains. Previous methods either engage in prompt learning during the training phase or modify model parameters at test time through entropy minimization. The former often overlooks unlabeled target data, while the latter doesn't fully address domain shifts. In this work, our approach, Optimal Transport-guided Test-Time Visual Prompting (OT-VP), handles these problems by leveraging prompt learning at test time to align the target and source domains without accessing the training process or altering pre-trained model parameters. This method involves learning a universal visual prompt for the target domain by optimizing the Optimal Transport distance. With just four prompt tokens learned, OT-VP achieves a $5.0\%$ and $1.5\%$ increase in averaged accuracy across single-source and multi-source settings on three benchmark datasets, which is $1.2\times$ and $1.5\times$ the improvement of the state-of-the-art method, respectively.
Test-time Assessment of a Model's Performance on Unseen Domains via Optimal Transport
Mehra, Akshay, Zhang, Yunbei, Hamm, Jihun
Gauging the performance of ML models on data from unseen domains at test-time is essential yet a challenging problem due to the lack of labels in this setting. Moreover, the performance of these models on in-distribution data is a poor indicator of their performance on data from unseen domains. Thus, it is essential to develop metrics that can provide insights into the model's performance at test time and can be computed only with the information available at test time (such as their model parameters, the training data or its statistics, and the unlabeled test data). To this end, we propose a metric based on Optimal Transport that is highly correlated with the model's performance on unseen domains and is efficiently computable only using information available at test time. Concretely, our metric characterizes the model's performance on unseen domains using only a small amount of unlabeled data from these domains and data or statistics from the training (source) domain(s). Through extensive empirical evaluation using standard benchmark datasets, and their corruptions, we demonstrate the utility of our metric in estimating the model's performance in various practical applications. These include the problems of selecting the source data and architecture that leads to the best performance on data from an unseen domain and the problem of predicting a deployed model's performance at test time on unseen domains. Our empirical results show that our metric, which uses information from both the source and the unseen domain, is highly correlated with the model's performance, achieving a significantly better correlation than that obtained via the popular prediction entropy-based metric, which is computed solely using the data from the unseen domain.
Can Domain Adaptation Improve Accuracy and Fairness of Skin Lesion Classification?
Wang, Janet, Zhang, Yunbei, Ding, Zhengming, Hamm, Jihun
Deep learning-based diagnostic system has demonstrated potential in classifying skin cancer conditions when labeled training example are abundant. However, skin lesion analysis often suffers from a scarcity of labeled data, hindering the development of an accurate and reliable diagnostic system. In this work, we leverage multiple skin lesion datasets and investigate the feasibility of various unsupervised domain adaptation (UDA) methods in binary and multi-class skin lesion classification. In particular, we assess three UDA training schemes: single-, combined-, and multi-source. Our experiment results show that UDA is effective in binary classification, with further improvement being observed when imbalance is mitigated. In multi-class task, its performance is less prominent, and imbalance problem again needs to be addressed to achieve above-baseline accuracy. Through our quantitative analysis, we find that the test error of multi-class tasks is strongly correlated with label shift, and feature-level UDA methods have limitations when handling imbalanced datasets. Finally, our study reveals that UDA can effectively reduce bias against minority groups and promote fairness, even without the explicit use of fairness-focused techniques.
Analysis of Task Transferability in Large Pre-trained Classifiers
Mehra, Akshay, Zhang, Yunbei, Hamm, Jihun
Transfer learning transfers the knowledge acquired by a model from a source task to multiple downstream target tasks with minimal fine-tuning. The success of transfer learning at improving performance, especially with the use of large pre-trained models has made transfer learning an essential tool in the machine learning toolbox. However, the conditions under which the performance is transferable to downstream tasks are not understood very well. In this work, we analyze the transfer of performance for classification tasks, when only the last linear layer of the source model is fine-tuned on the target task. We propose a novel Task Transfer Analysis approach that transforms the source distribution (and classifier) by changing the class prior distribution, label, and feature spaces to produce a new source distribution (and classifier) and allows us to relate the loss of the downstream task (i.e., transferability) to that of the source task. Concretely, our bound explains transferability in terms of the Wasserstein distance between the transformed source and downstream task's distribution, conditional entropy between the label distributions of the two tasks, and weighted loss of the source classifier on the source task. Moreover, we propose an optimization problem for learning the transforms of the source task to minimize the upper bound on transferability. We perform a large-scale empirical study by using state-of-the-art pre-trained models and demonstrate the effectiveness of our bound and optimization at predicting transferability. The results of our experiments demonstrate how factors such as task relatedness, pretraining method, and model architecture affect transferability.
Certified Adversarial Defenses Meet Out-of-Distribution Corruptions: Benchmarking Robustness and Simple Baselines
Sun, Jiachen, Mehra, Akshay, Kailkhura, Bhavya, Chen, Pin-Yu, Hendrycks, Dan, Hamm, Jihun, Mao, Z. Morley
Certified robustness guarantee gauges a model's robustness to test-time attacks and can assess the model's readiness for deployment in the real world. In this work, we critically examine how the adversarial robustness guarantees from randomized smoothing-based certification methods change when state-of-the-art certifiably robust models encounter out-of-distribution (OOD) data. Our analysis demonstrates a previously unknown vulnerability of these models to low-frequency OOD data such as weather-related corruptions, rendering these models unfit for deployment in the wild. To alleviate this issue, we propose a novel data augmentation scheme, FourierMix, that produces augmentations to improve the spectral coverage of the training data. Furthermore, we propose a new regularizer that encourages consistent predictions on noise perturbations of the augmented data to improve the quality of the smoothed models. We find that FourierMix augmentations help eliminate the spectral bias of certifiably robust models enabling them to achieve significantly better robustness guarantees on a range of OOD benchmarks. Our evaluation also uncovers the inability of current OOD benchmarks at highlighting the spectral biases of the models. To this end, we propose a comprehensive benchmarking suite that contains corruptions from different regions in the spectral domain. Evaluation of models trained with popular augmentation methods on the proposed suite highlights their spectral biases and establishes the superiority of FourierMix trained models at achieving better-certified robustness guarantees under OOD shifts over the entire frequency spectrum.
Machine Learning with Electronic Health Records is vulnerable to Backdoor Trigger Attacks
Joe, Byunggill, Mehra, Akshay, Shin, Insik, Hamm, Jihun
Electronic Health Records (EHRs) provide a wealth of information for machine learning algorithms to predict the patient outcome from the data including diagnostic information, vital signals, lab tests, drug administration, and demographic information. Machine learning models can be built, for example, to evaluate patients based on their predicted mortality or morbidity and to predict required resources for efficient resource management in hospitals. In this paper, we demonstrate that an attacker can manipulate the machine learning predictions with EHRs easily and selectively at test time by backdoor attacks with the poisoned training data. Furthermore, the poison we create has statistically similar features to the original data making it hard to detect, and can also attack multiple machine learning models without any knowledge of the models. With less than 5% of the raw EHR data poisoned, we achieve average attack success rates of 97% on mortality prediction tasks with MIMIC-III database against Logistic Regression, Multilayer Perceptron, and Long Short-term Memory models simultaneously.
Learning to Separate Clusters of Adversarial Representations for Robust Adversarial Detection
Joe, Byunggill, Hamm, Jihun, Hwang, Sung Ju, Son, Sooel, Shin, Insik
Although deep neural networks have shown promising performances on various tasks, they are susceptible to incorrect predictions induced by imperceptibly small perturbations in inputs. A large number of previous works proposed to detect adversarial attacks. Yet, most of them cannot effectively detect them against adaptive whitebox attacks where an adversary has the knowledge of the model and the defense method. In this paper, we propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature. We consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property. This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
K-Beam Minimax: Efficient Optimization for Deep Adversarial Learning
Hamm, Jihun, Noh, Yung-Kyun
Minimax optimization plays a key role in adversarial training of machine learning algorithms, such as learning generative models, domain adaptation, privacy preservation, and robust learning. In this paper, we demonstrate the failure of alternating gradient descent in minimax optimization problems due to the discontinuity of solutions of the inner maximization. To address this, we propose a new epsilon-subgradient descent algorithm that addresses this problem by simultaneously tracking K candidate solutions. Practically, the algorithm can find solutions that previous saddle-point algorithms cannot find, with only a sublinear increase of complexity in K. We analyze the conditions under which the algorithm converges to the true solution in detail. A significant improvement in stability and convergence speed of the algorithm is observed in simple representative problems, GAN training, and domain-adaptation problems.
Fast Interactive Image Retrieval using large-scale unlabeled data
Mehra, Akshay, Hamm, Jihun, Belkin, Mikhail
An interactive image retrieval system learns which images in the database belong to a user's query concept, by analyzing the example images and feedback provided by the user. The challenge is to retrieve the relevant images with minimal user interaction. In this work, we propose to solve this problem by posing it as a binary classification task of classifying all images in the database as being relevant or irrelevant to the user's query concept. Our method combines active learning with graph-based semi-supervised learning (GSSL) to tackle this problem. Active learning reduces the number of user interactions by querying the labels of the most informative points and GSSL allows to use abundant unlabeled data along with the limited labeled data provided by the user. To efficiently find the most informative point, we use an uncertainty sampling based method that queries the label of the point nearest to the decision boundary of the classifier. We estimate this decision boundary using our heuristic of adaptive threshold. To utilize huge volumes of unlabeled data we use an efficient approximation based method that reduces the complexity of GSSL from $O(n^3)$ to $O(n)$, making GSSL scalable. We make the classifier robust to the diversity and noisy labels associated with images in large databases by incorporating information from multiple modalities such as visual information extracted from deep learning based models and semantic information extracted from the WordNet. High F1 scores within few relevance feedback rounds in our experiments with concepts defined on AnimalWithAttributes and Imagenet (1.2 million images) datasets indicate the effectiveness and scalability of our approach.