Goto

Collaborating Authors

 Halpern, Yoni


Bi-Fact: A Bidirectional Factorization-based Evaluation of Intent Extraction from UI Trajectories

arXiv.org Artificial Intelligence

Evaluating intent extraction from GUIs demands accurate, fine-grained metrics. This paper introduces Bi-Fact, a novel method that decomposes intents into atomic facts and performs bidirectional comparisons to assess precision and recall. Experiments demonstrate Bi-Fact's superior correlation with human judgments compared to existing metrics, establishing a more robust evaluation framework for UI-driven intent understanding.


FRAPP\'E: A Post-Processing Framework for Group Fairness Regularization

arXiv.org Artificial Intelligence

Post-processing mitigation techniques for group fairness generally adjust the decision threshold of a base model in order to improve fairness. Methods in this family exhibit several advantages that make them appealing in practice: post-processing requires no access to the model training pipeline, is agnostic to the base model architecture, and offers a reduced computation cost compared to in-processing. Despite these benefits, existing methods face other challenges that limit their applicability: they require knowledge of the sensitive attributes at inference time and are oftentimes outperformed by in-processing. In this paper, we propose a general framework to transform any in-processing method with a penalized objective into a post-processing procedure. The resulting method is specifically designed to overcome the aforementioned shortcomings of prior post-processing approaches. Furthermore, we show theoretically and through extensive experiments on real-world data that the resulting post-processing method matches or even surpasses the fairness-error trade-off offered by the in-processing counterpart.


Learning from Negative User Feedback and Measuring Responsiveness for Sequential Recommenders

arXiv.org Artificial Intelligence

Sequential recommenders have been widely used in industry due to their strength in modeling user preferences. While these models excel at learning a user's positive interests, less attention has been paid to learning from negative user feedback. Negative user feedback is an important lever of user control, and comes with an expectation that recommenders should respond quickly and reduce similar recommendations to the user. However, negative feedback signals are often ignored in the training objective of sequential retrieval models, which primarily aim at predicting positive user interactions. In this work, we incorporate explicit and implicit negative user feedback into the training objective of sequential recommenders in the retrieval stage using a "not-to-recommend" loss function that optimizes for the log-likelihood of not recommending items with negative feedback. We demonstrate the effectiveness of this approach using live experiments on a large-scale industrial recommender system. Furthermore, we address a challenge in measuring recommender responsiveness to negative feedback by developing a counterfactual simulation framework to compare recommender responses between different user actions, showing improved responsiveness from the modeling change.


Benefits of Overparameterization in Single-Layer Latent Variable Generative Models

arXiv.org Machine Learning

One of the most surprising and exciting discoveries in supervising learning was the benefit of overparametrization (i.e. training a very large model) to improving the optimization landscape of a problem, with minimal effect on statistical performance (i.e. generalization). In contrast, unsupervised settings have been under-explored, despite the fact that it has been observed that overparameterization can be helpful as early as Dasgupta & Schulman (2007). In this paper, we perform an exhaustive study of different aspects of overparameterization in unsupervised learning via synthetic and semi-synthetic experiments. We discuss benefits to different metrics of success (held-out log-likelihood, recovering the parameters of the ground-truth model), sensitivity to variations of the training algorithm, and behavior as the amount of overparameterization increases. We find that, when learning using methods such as variational inference, larger models can significantly increase the number of ground truth latent variables recovered.


BriarPatches: Pixel-Space Interventions for Inducing Demographic Parity

arXiv.org Machine Learning

We introduce the BriarPatch, a pixel-space intervention that obscures sensitive attributes from representations encoded in pre-trained classifiers. The patches encourage internal model representations not to encode sensitive information, which has the effect of pushing downstream predictors towards exhibiting demographic parity with respect to the sensitive information. The net result is that these BriarPatches provide an intervention mechanism available at user level, and complements prior research on fair representations that were previously only applicable by model developers and ML experts.


No Classification without Representation: Assessing Geodiversity Issues in Open Data Sets for the Developing World

arXiv.org Machine Learning

Modern machine learning systems such as image classifiers rely heavily on large scale data sets for training. Such data sets are costly to create, thus in practice a small number of freely available, open source data sets are widely used. We suggest that examining the geo-diversity of open data sets is critical before adopting a data set for use cases in the developing world. We analyze two large, publicly available image data sets to assess geo-diversity and find that these data sets appear to exhibit an observable amerocentric and eurocentric representation bias. Further, we analyze classifiers trained on these data sets to assess the impact of these training distributions and find strong differences in the relative performance on images from different locales. These results emphasize the need to ensure geo-representation when constructing data sets for use in the developing world.


Clinical Tagging with Joint Probabilistic Models

arXiv.org Machine Learning

We describe a method for parameter estimation in bipartite probabilistic graphical models for joint prediction of clinical conditions from the electronic medical record. The method does not rely on the availability of gold-standard labels, but rather uses noisy labels, called anchors, for learning. We provide a likelihood-based objective and a moments-based initialization that are effective at learning the model parameters. The learned model is evaluated in a task of assigning a heldout clinical condition to patients based on retrospective analysis of the records, and outperforms baselines which do not account for the noisiness in the labels or do not model the conditions jointly.


Anchored Discrete Factor Analysis

arXiv.org Machine Learning

We present a semi-supervised learning algorithm for learning discrete factor analysis models with arbitrary structure on the latent variables. Our algorithm assumes that every latent variable has an "anchor", an observed variable with only that latent variable as its parent. Given such anchors, we show that it is possible to consistently recover moments of the latent variables and use these moments to learn complete models. We also introduce a new technique for improving the robustness of method-of-moment algorithms by optimizing over the marginal polytope or its relaxations. We evaluate our algorithm using two real-world tasks, tag prediction on questions from the Stack Overflow website and medical diagnosis in an emergency department.


A Practical Algorithm for Topic Modeling with Provable Guarantees

arXiv.org Machine Learning

Topic models provide a useful method for dimensionality reduction and exploratory data analysis in large text corpora. Most approaches to topic model inference have been based on a maximum likelihood objective. Efficient algorithms exist that approximate this objective, but they have no provable guarantees. Recently, algorithms have been introduced that provide provable bounds, but these algorithms are not practical because they are inefficient and not robust to violations of model assumptions. In this paper we present an algorithm for topic model inference that is both provable and practical. The algorithm produces results comparable to the best MCMC implementations while running orders of magnitude faster.