Goto

Collaborating Authors

 Hall, Ryan


Autonomous Radiotherapy Treatment Planning Using DOLA: A Privacy-Preserving, LLM-Based Optimization Agent

arXiv.org Artificial Intelligence

Radiotherapy treatment planning is a complex and time-intensive process, often impacted by inter-planner variability and subjective decision-making. To address these challenges, we introduce Dose Optimization Language Agent (DOLA), an autonomous large language model (LLM)-based agent designed for optimizing radiotherapy treatment plans while rigorously protecting patient privacy. DOLA integrates the LLaMa3.1 LLM directly with a commercial treatment planning system, utilizing chain-of-thought prompting, retrieval-augmented generation (RAG), and reinforcement learning (RL). Operating entirely within secure local infrastructure, this agent eliminates external data sharing. We evaluated DOLA using a retrospective cohort of 18 prostate cancer patients prescribed 60 Gy in 20 fractions, comparing model sizes (8 billion vs. 70 billion parameters) and optimization strategies (No-RAG, RAG, and RAG+RL) over 10 planning iterations. The 70B model demonstrated significantly improved performance, achieving approximately 16.4% higher final scores than the 8B model. The RAG approach outperformed the No-RAG baseline by 19.8%, and incorporating RL accelerated convergence, highlighting the synergy of retrieval-based memory and reinforcement learning. Optimal temperature hyperparameter analysis identified 0.4 as providing the best balance between exploration and exploitation. This proof of concept study represents the first successful deployment of locally hosted LLM agents for autonomous optimization of treatment plans within a commercial radiotherapy planning system. By extending human-machine interaction through interpretable natural language reasoning, DOLA offers a scalable and privacy-conscious framework, with significant potential for clinical implementation and workflow improvement.


Iterative Prompt Refinement for Radiation Oncology Symptom Extraction Using Teacher-Student Large Language Models

arXiv.org Artificial Intelligence

This study introduces a novel teacher-student architecture utilizing Large Language Models (LLMs) to improve prostate cancer radiotherapy symptom extraction from clinical notes. Mixtral, the student model, initially extracts symptoms, followed by GPT-4, the teacher model, which refines prompts based on Mixtral's performance. This iterative process involved 294 single symptom clinical notes across 12 symptoms, with up to 16 rounds of refinement per epoch. Results showed significant improvements in extracting symptoms from both single and multi-symptom notes. For 59 single symptom notes, accuracy increased from 0.51 to 0.71, precision from 0.52 to 0.82, recall from 0.52 to 0.72, and F1 score from 0.49 to 0.73. In 375 multi-symptom notes, accuracy rose from 0.24 to 0.43, precision from 0.6 to 0.76, recall from 0.24 to 0.43, and F1 score from 0.20 to 0.44. These results demonstrate the effectiveness of advanced prompt engineering in LLMs for radiation oncology use.


Combining Search-Based Procedural Content Generation and Social Gaming in the Petalz Video Game

AAAI Conferences

Search-based procedural content generation methods allow video games to introduce new content continually, thereby engaging the player for a longer time while reducing the burden on developers. However, games so far have not explored the potential economic value of unique evolved artifacts. Building on this insight, this paper presents for the first time a Facebook game called Petalz in which players can share flowers they breed themselves with other players through a global marketplace. In particular, the market in this social game allows players to set the price of their evolved aesthetically-pleasing flowers in virtual currency. Furthermore, the transaction in which one player buys seeds from another creates a new social element that links the players in the transaction. The combination of unique user-generated content and social gaming in Petalz facilitates meaningful collaboration between users, positively influences the dynamics of the game, and opens new possibilities in digital entertainment.