Haddow, Barry
An Expanded Massive Multilingual Dataset for High-Performance Language Technologies
Burchell, Laurie, de Gibert, Ona, Arefyev, Nikolay, Aulamo, Mikko, Bañón, Marta, Chen, Pinzhen, Fedorova, Mariia, Guillou, Liane, Haddow, Barry, Hajič, Jan, Helcl, Jindřich, Henriksson, Erik, Klimaszewski, Mateusz, Komulainen, Ville, Kutuzov, Andrey, Kytöniemi, Joona, Laippala, Veronika, Mæhlum, Petter, Malik, Bhavitvya, Mehryary, Farrokh, Mikhailov, Vladislav, Moghe, Nikita, Myntti, Amanda, O'Brien, Dayyán, Oepen, Stephan, Pal, Proyag, Piha, Jousia, Pyysalo, Sampo, Ramírez-Sánchez, Gema, Samuel, David, Stepachev, Pavel, Tiedemann, Jörg, Variš, Dušan, Vojtěchová, Tereza, Zaragoza-Bernabeu, Jaume
Training state-of-the-art large language models requires vast amounts of clean and diverse textual data. However, building suitable multilingual datasets remains a challenge. In this work, we present HPLT v2, a collection of high-quality multilingual monolingual and parallel corpora. The monolingual portion of the data contains 8T tokens covering 193 languages, while the parallel data contains 380M sentence pairs covering 51 languages. We document the entire data pipeline and release the code to reproduce it. We provide extensive analysis of the quality and characteristics of our data. Finally, we evaluate the performance of language models and machine translation systems trained on HPLT v2, demonstrating its value.
Demystifying Multilingual Chain-of-Thought in Process Reward Modeling
Wang, Weixuan, Wu, Minghao, Haddow, Barry, Birch, Alexandra
Large language models (LLMs) are designed to perform a wide range of tasks. To improve their ability to solve complex problems requiring multi-step reasoning, recent research leverages process reward modeling to provide fine-grained feedback at each step of the reasoning process for reinforcement learning (RL), but it predominantly focuses on English. In this paper, we tackle the critical challenge of extending process reward models (PRMs) to multilingual settings. To achieve this, we train multilingual PRMs on a dataset spanning seven languages, which is translated from English. Through comprehensive evaluations on two widely used reasoning benchmarks across 11 languages, we demonstrate that multilingual PRMs not only improve average accuracy but also reduce early-stage reasoning errors. Furthermore, our results highlight the sensitivity of multilingual PRMs to both the number of training languages and the volume of English data, while also uncovering the benefits arising from more candidate responses and trainable parameters. This work opens promising avenues for robust multilingual applications in complex, multi-step reasoning tasks. In addition, we release the code to foster research along this line.
Prepending or Cross-Attention for Speech-to-Text? An Empirical Comparison
Lam, Tsz Kin, Gaido, Marco, Papi, Sara, Bentivogli, Luisa, Haddow, Barry
Following the remarkable success of Large Language Models (LLMs) in NLP tasks, there is increasing interest in extending their capabilities to speech -- the most common form in communication. To integrate speech into LLMs, one promising approach is dense feature prepending (DFP) which prepends the projected speech representations to the textual representations, allowing end-to-end training with the speech encoder. However, DFP typically requires connecting a text decoder to a speech encoder. This raises questions about the importance of having a sophisticated speech encoder for DFP, and how its performance compares with a standard encoder-decoder (i.e. cross-attention) architecture. In order to perform a controlled architectural comparison, we train all models from scratch, rather than using large pretrained models, and use comparable data and parameter settings, testing speech-to-text recognition (ASR) and translation (ST) on MuST-C v1.0 and CoVoST2 datasets. We study the influence of a speech encoder in DFP. More importantly, we compare DFP and cross-attention under a variety of configurations, such as CTC compression, sequence-level knowledge distillation, generation speed and GPU memory footprint on monolingual, bilingual and multilingual models. Despite the prevalence of DFP over cross-attention, our overall results do not indicate a clear advantage of DFP.
Generics are puzzling. Can language models find the missing piece?
Calderón, Gustavo Cilleruelo, Allaway, Emily, Haddow, Barry, Birch, Alexandra
Generic sentences express generalisations about the world without explicit quantification. Although generics are central to everyday communication, building a precise semantic framework has proven difficult, in part because speakers use generics to generalise properties with widely different statistical prevalence. In this work, we study the implicit quantification and context-sensitivity of generics by leveraging language models as models of language. We create ConGen, a dataset of 2873 naturally occurring generic and quantified sentences in context, and define p-acceptability, a metric based on surprisal that is sensitive to quantification. Our experiments show generics are more context-sensitive than determiner quantifiers and about 20% of naturally occurring generics we analyze express weak generalisations. We also explore how human biases in stereotypes can be observed in language models.
Findings of the IWSLT 2024 Evaluation Campaign
Ahmad, Ibrahim Said, Anastasopoulos, Antonios, Bojar, Ondřej, Borg, Claudia, Carpuat, Marine, Cattoni, Roldano, Cettolo, Mauro, Chen, William, Dong, Qianqian, Federico, Marcello, Haddow, Barry, Javorský, Dávid, Krubiński, Mateusz, Lam, Tsz Kin, Ma, Xutai, Mathur, Prashant, Matusov, Evgeny, Maurya, Chandresh, McCrae, John, Murray, Kenton, Nakamura, Satoshi, Negri, Matteo, Niehues, Jan, Niu, Xing, Ojha, Atul Kr., Ortega, John, Papi, Sara, Polák, Peter, Pospíšil, Adam, Pecina, Pavel, Salesky, Elizabeth, Sethiya, Nivedita, Sarkar, Balaram, Shi, Jiatong, Sikasote, Claytone, Sperber, Matthias, Stüker, Sebastian, Sudoh, Katsuhito, Thompson, Brian, Turchi, Marco, Waibel, Alex, Watanabe, Shinji, Wilken, Patrick, Zemánek, Petr, Zevallos, Rodolfo
This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 18 teams whose submissions are documented in 26 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Bridging the Language Gaps in Large Language Models with Inference-Time Cross-Lingual Intervention
Wang, Weixuan, Wu, Minghao, Haddow, Barry, Birch, Alexandra
Large Language Models (LLMs) have shown remarkable capabilities in natural language processing but exhibit significant performance gaps among different languages. Most existing approaches to address these disparities rely on pretraining or fine-tuning, which are resource-intensive. To overcome these limitations without incurring significant costs, we propose Inference-Time Cross-Lingual Intervention (INCLINE), a novel framework that enhances LLM performance on low-performing (source) languages by aligning their internal representations with those of high-performing (target) languages during inference. INCLINE initially learns alignment matrices using parallel sentences from source and target languages through a Least-Squares optimization, and then applies these matrices during inference to transform the low-performing language representations toward the high-performing language space. Extensive experiments on nine benchmarks with five LLMs demonstrate that INCLINE significantly improves performance across diverse tasks and languages, compared to recent strong baselines. Our analysis demonstrates that INCLINE is highly cost-effective and applicable to a wide range of applications. In addition, we release the code to foster research along this line: https://github.com/weixuan-wang123/INCLINE.
Context and System Fusion in Post-ASR Emotion Recognition with Large Language Models
Stepachev, Pavel, Chen, Pinzhen, Haddow, Barry
Large language models (LLMs) have started to play a vital Formally, our approach explores suitable prompting role in modelling speech and text. To explore the best use of strategies to perform speech emotion prediction from ASR context and multiple systems' outputs for post-ASR speech outputs without speech signals. Most efforts are centred on emotion prediction, we study LLM prompting on a recent creating a practical context for prompting. The contributions task named GenSEC. Our techniques include ASR transcript of this work are: ranking, variable conversation context, and system output fusion. Methodologically, we 1) select and rank ASR outputs We show that the conversation context has diminishing as LLM input using multiple metrics and 2) exploit and returns and the metric used to select the transcript for prediction fuse the conversation history and multiple ASR system is crucial.
EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models
Ji, Shaoxiong, Li, Zihao, Paul, Indraneil, Paavola, Jaakko, Lin, Peiqin, Chen, Pinzhen, O'Brien, Dayyán, Luo, Hengyu, Schütze, Hinrich, Tiedemann, Jörg, Haddow, Barry
In this work, we introduce EMMA-500, a large-scale multilingual language model continue-trained on texts across 546 languages designed for enhanced multilingual performance, focusing on improving language coverage for low-resource languages. To facilitate continual pre-training, we compile the MaLA corpus, a comprehensive multilingual dataset enriched with curated datasets across diverse domains. Leveraging this corpus, we conduct extensive continual pre-training of the Llama 2 7B model, resulting in EMMA-500, which demonstrates robust performance across a wide collection of benchmarks, including a comprehensive set of multilingual tasks and PolyWrite, an open-ended generation benchmark developed in this study. Our results highlight the effectiveness of continual pre-training in expanding large language models' language capacity, particularly for underrepresented languages, demonstrating significant gains in cross-lingual transfer, task generalization, and language adaptability.
EuroLLM: Multilingual Language Models for Europe
Martins, Pedro Henrique, Fernandes, Patrick, Alves, João, Guerreiro, Nuno M., Rei, Ricardo, Alves, Duarte M., Pombal, José, Farajian, Amin, Faysse, Manuel, Klimaszewski, Mateusz, Colombo, Pierre, Haddow, Barry, de Souza, José G. C., Birch, Alexandra, Martins, André F. T.
The quality of open-weight LLMs has seen significant improvement, yet they remain predominantly focused on English. In this paper, we introduce the EuroLLM project, aimed at developing a suite of open-weight multilingual LLMs capable of understanding and generating text in all official European Union languages, as well as several additional relevant languages. We outline the progress made to date, detailing our data collection and filtering process, the development of scaling laws, the creation of our multilingual tokenizer, and the data mix and modeling configurations. Additionally, we release our initial models: EuroLLM-1.7B and EuroLLM-1.7B-Instruct and report their performance on multilingual general benchmarks and machine translation.
Compact Speech Translation Models via Discrete Speech Units Pretraining
Lam, Tsz Kin, Birch, Alexandra, Haddow, Barry
We propose a pretraining method to use Self-Supervised Speech (SSS) model to creating more compact Speech-to-text Translation. In contrast to using the SSS model for initialization, our method is more suitable to memory constrained scenario such as on-device deployment. Our method is based on Discrete Speech Units (DSU) extracted from the SSS model. In the first step, our method pretrains two smaller encoder-decoder models on 1) Filterbank-to-DSU (Fbk-to-DSU) and 2) DSU-to-Translation (DSU-to-Trl) data respectively. The DSU thus become the distillation inputs of the smaller models. Subsequently, the encoder from the Fbk-to-DSU model and the decoder from the DSU-to-Trl model are taken to initialise the compact model. Finally, the compact model is finetuned on the paired Fbk-Trl data. In addition to being compact, our method requires no transcripts, making it applicable to low-resource settings. It also avoids speech discretization in inference and is more robust to the DSU tokenization. Evaluation on CoVoST-2 (X-En) shows that our method has consistent improvement over the baseline in three metrics while being compact i.e., only half the SSS model size.