Goto

Collaborating Authors

 Ha, Sehoon


Do Looks Matter? Exploring Functional and Aesthetic Design Preferences for a Robotic Guide Dog

arXiv.org Artificial Intelligence

Dog guides offer an effective mobility solution for blind or visually impaired (BVI) individuals, but conventional dog guides have limitations including the need for care, potential distractions, societal prejudice, high costs, and limited availability. To address these challenges, we seek to develop a robot dog guide capable of performing the tasks of a conventional dog guide, enhanced with additional features. In this work, we focus on design research to identify functional and aesthetic design concepts to implement into a quadrupedal robot. The aesthetic design remains relevant even for BVI users due to their sensitivity toward societal perceptions and the need for smooth integration into society. We collected data through interviews and surveys to answer specific design questions pertaining to the appearance, texture, features, and method of controlling and communicating with the robot. Our study identified essential and preferred features for a future robot dog guide, which are supported by relevant statistics aligning with each suggestion. These findings will inform the future development of user-centered designs to effectively meet the needs of BVI individuals.


Learning a High-quality Robotic Wiping Policy Using Systematic Reward Analysis and Visual-Language Model Based Curriculum

arXiv.org Artificial Intelligence

Autonomous robotic wiping is an important task in various industries, ranging from industrial manufacturing to sanitization in healthcare. Deep reinforcement learning (Deep RL) has emerged as a promising algorithm, however, it often suffers from a high demand for repetitive reward engineering. Instead of relying on manual tuning, we first analyze the convergence of quality-critical robotic wiping, which requires both high-quality wiping and fast task completion, to show the poor convergence of the problem and propose a new bounded reward formulation to make the problem feasible. Then, we further improve the learning process by proposing a novel visual-language model (VLM) based curriculum, which actively monitors the progress and suggests hyperparameter tuning. We demonstrate that the combined method can find a desirable wiping policy on surfaces with various curvatures, frictions, and waypoints, which cannot be learned with the baseline formulation. The demo of this project can be found at: https://sites.google.com/view/highqualitywiping.


PrivilegedDreamer: Explicit Imagination of Privileged Information for Rapid Adaptation of Learned Policies

arXiv.org Artificial Intelligence

Numerous real-world control problems involve dynamics and objectives affected by unobservable hidden parameters, ranging from autonomous driving to robotic manipulation, which cause performance degradation during sim-to-real transfer. To represent these kinds of domains, we adopt hidden-parameter Markov decision processes (HIP-MDPs), which model sequential decision problems where hidden variables parameterize transition and reward functions. Existing approaches, such as domain randomization, domain adaptation, and meta-learning, simply treat the effect of hidden parameters as additional variance and often struggle to effectively handle HIP-MDP problems, especially when the rewards are parameterized by hidden variables. We introduce Privileged-Dreamer, a model-based reinforcement learning framework that extends the existing model-based approach by incorporating an explicit parameter estimation module. PrivilegedDreamer features its novel dual recurrent architecture that explicitly estimates hidden parameters from limited historical data and enables us to condition the model, actor, and critic networks on these estimated parameters. Our empirical analysis on five diverse HIP-MDP tasks demonstrates that PrivilegedDreamer outperforms state-of-the-art model-based, model-free, and domain adaptation learning algorithms. Additionally, we conduct ablation studies to justify the inclusion of each component in the proposed architecture.


RobotMover: Learning to Move Large Objects by Imitating the Dynamic Chain

arXiv.org Artificial Intelligence

Moving large objects, such as furniture, is a critical capability for robots operating in human environments. This task presents significant challenges due to two key factors: the need to synchronize whole-body movements to prevent collisions between the robot and the object, and the under-actuated dynamics arising from the substantial size and weight of the objects. These challenges also complicate performing these tasks via teleoperation. In this work, we introduce \method, a generalizable learning framework that leverages human-object interaction demonstrations to enable robots to perform large object manipulation tasks. Central to our approach is the Dynamic Chain, a novel representation that abstracts human-object interactions so that they can be retargeted to robotic morphologies. The Dynamic Chain is a spatial descriptor connecting the human and object root position via a chain of nodes, which encode the position and velocity of different interaction keypoints. We train policies in simulation using Dynamic-Chain-based imitation rewards and domain randomization, enabling zero-shot transfer to real-world settings without fine-tuning. Our approach outperforms both learning-based methods and teleoperation baselines across six evaluation metrics when tested on three distinct object types, both in simulation and on physical hardware. Furthermore, we successfully apply the learned policies to real-world tasks, such as moving a trash cart and rearranging chairs.


Understanding Expectations for a Robotic Guide Dog for Visually Impaired People

arXiv.org Artificial Intelligence

Robotic guide dogs hold significant potential to enhance the autonomy and mobility of blind or visually impaired (BVI) individuals by offering universal assistance over unstructured terrains at affordable costs. However, the design of robotic guide dogs remains underexplored, particularly in systematic aspects such as gait controllers, navigation behaviors, interaction methods, and verbal explanations. Our study addresses this gap by conducting user studies with 18 BVI participants, comprising 15 cane users and three guide dog users. Participants interacted with a quadrupedal robot and provided both quantitative and qualitative feedback. Our study revealed several design implications, such as a preference for a learning-based controller and a rigid handle, gradual turns with asymmetric speeds, semantic communication methods, and explainability. The study also highlighted the importance of customization to support users with diverse backgrounds and preferences, along with practical concerns such as battery life, maintenance, and weather issues. These findings offer valuable insights and design implications for future research and development of robotic guide dogs.


Opt2Skill: Imitating Dynamically-feasible Whole-Body Trajectories for Versatile Humanoid Loco-Manipulation

arXiv.org Artificial Intelligence

Humanoid robots are designed to perform diverse loco-manipulation tasks. However, they face challenges due to their high-dimensional and unstable dynamics, as well as the complex contact-rich nature of the tasks. Model-based optimal control methods offer precise and systematic control but are limited by high computational complexity and accurate contact sensing. On the other hand, reinforcement learning (RL) provides robustness and handles high-dimensional spaces but suffers from inefficient learning, unnatural motion, and sim-to-real gaps. To address these challenges, we introduce Opt2Skill, an end-to-end pipeline that combines model-based trajectory optimization with RL to achieve robust whole-body loco-manipulation. We generate reference motions for the Digit humanoid robot using differential dynamic programming (DDP) and train RL policies to track these trajectories. Our results demonstrate that Opt2Skill outperforms pure RL methods in both training efficiency and task performance, with optimal trajectories that account for torque limits enhancing trajectory tracking. We successfully transfer our approach to real-world applications.


Learning Koopman Dynamics for Safe Legged Locomotion with Reinforcement Learning-based Controller

arXiv.org Artificial Intelligence

-- Learning-based algorithms have demonstrated impressive performance in agile locomotion of legged robots. However, learned policies are often complex and opaque due to the black-box nature of learning algorithms, which hinders predictability and precludes guarantees on performance or safety. In this work, we develop a novel safe navigation framework that combines Koopman operators and model-predictive control (MPC) frameworks. Our method adopts Koopman operator theory to learn the linear evolution of dynamics of the underlying locomotion policy, which can be effectively learned with Dynamic Mode Decomposition (DMD). Given that our learned model is linear, we can readily leverage the standard MPC algorithm. Our framework is easy to implement with less prior knowledge because it does not require access to the underlying dynamical systems or control-theoretic techniques. We demonstrate that the learned linear dynamics can better predict the trajectories of legged robots than baselines. In addition, we showcase that the proposed navigation framework can achieve better safety with less collisions in challenging and dense environments with narrow passages. I. INTRODUCTION Recent advances in reinforcement learning have led to significant improvements in robust and agile quadrupedal locomotion [1]-[6].


HM3D-OVON: A Dataset and Benchmark for Open-Vocabulary Object Goal Navigation

arXiv.org Artificial Intelligence

We present the Habitat-Matterport 3D Open Vocabulary Object Goal Navigation dataset (HM3D-OVON), a large-scale benchmark that broadens the scope and semantic range of prior Object Goal Navigation (ObjectNav) benchmarks. Leveraging the HM3DSem dataset, HM3D-OVON incorporates over 15k annotated instances of household objects across 379 distinct categories, derived from photo-realistic 3D scans of real-world environments. In contrast to earlier ObjectNav datasets, which limit goal objects to a predefined set of 6-20 categories, HM3D-OVON facilitates the training and evaluation of models with an open-set of goals defined through free-form language at test-time. Through this open-vocabulary formulation, HM3D-OVON encourages progress towards learning visuo-semantic navigation behaviors that are capable of searching for any object specified by text in an open-vocabulary manner. Additionally, we systematically evaluate and compare several different types of approaches on HM3D-OVON. We find that HM3D-OVON can be used to train an open-vocabulary ObjectNav agent that achieves both higher performance and is more robust to localization and actuation noise than the state-of-the-art ObjectNav approach. We hope that our benchmark and baseline results will drive interest in developing embodied agents that can navigate real-world spaces to find household objects specified through free-form language, taking a step towards more flexible and human-like semantic visual navigation. Code and videos available at: naoki.io/ovon.


Language Guided Skill Discovery

arXiv.org Artificial Intelligence

Skill discovery methods enable agents to learn diverse emergent behaviors without explicit rewards. To make learned skills useful for unknown downstream tasks, obtaining a semantically diverse repertoire of skills is essential. While some approaches introduce a discriminator to distinguish skills and others aim to increase state coverage, no existing work directly addresses the "semantic diversity" of skills. We hypothesize that leveraging the semantic knowledge of large language models (LLMs) can lead us to improve semantic diversity of resulting behaviors. In this sense, we introduce Language Guided Skill Discovery (LGSD), a skill discovery framework that aims to directly maximize the semantic diversity between skills. LGSD takes user prompts as input and outputs a set of semantically distinctive skills. The prompts serve as a means to constrain the search space into a semantically desired subspace, and the generated LLM outputs guide the agent to visit semantically diverse states within the subspace. We demonstrate that LGSD enables legged robots to visit different user-intended areas on a plane by simply changing the prompt. Furthermore, we show that language guidance aids in discovering more diverse skills compared to five existing skill discovery methods in robot-arm manipulation environments. Lastly, LGSD provides a simple way of utilizing learned skills via natural language.


VLFM: Vision-Language Frontier Maps for Zero-Shot Semantic Navigation

arXiv.org Artificial Intelligence

Understanding how humans leverage semantic knowledge to navigate unfamiliar environments and decide where to explore next is pivotal for developing robots capable of human-like search behaviors. We introduce a zero-shot navigation approach, Vision-Language Frontier Maps (VLFM), which is inspired by human reasoning and designed to navigate towards unseen semantic objects in novel environments. VLFM builds occupancy maps from depth observations to identify frontiers, and leverages RGB observations and a pre-trained vision-language model to generate a language-grounded value map. VLFM then uses this map to identify the most promising frontier to explore for finding an instance of a given target object category. We evaluate VLFM in photo-realistic environments from the Gibson, Habitat-Matterport 3D (HM3D), and Matterport 3D (MP3D) datasets within the Habitat simulator. Remarkably, VLFM achieves state-of-the-art results on all three datasets as measured by success weighted by path length (SPL) for the Object Goal Navigation task. Furthermore, we show that VLFM's zero-shot nature enables it to be readily deployed on real-world robots such as the Boston Dynamics Spot mobile manipulation platform. We deploy VLFM on Spot and demonstrate its capability to efficiently navigate to target objects within an office building in the real world, without any prior knowledge of the environment. The accomplishments of VLFM underscore the promising potential of vision-language models in advancing the field of semantic navigation. Videos of real-world deployment can be viewed at naoki.io/vlfm.