Gupta, Harshit
Reading between the Lines: Can LLMs Identify Cross-Cultural Communication Gaps?
Saha, Sougata, Pandey, Saurabh Kumar, Gupta, Harshit, Choudhury, Monojit
In a rapidly globalizing and digital world, content such as book and product reviews created by people from diverse cultures are read and consumed by others from different corners of the world. In this paper, we investigate the extent and patterns of gaps in understandability of book reviews due to the presence of culturally-specific items and elements that might be alien to users from another culture. Our user-study on 57 book reviews from Goodreads reveal that 83\% of the reviews had at least one culture-specific difficult-to-understand element. We also evaluate the efficacy of GPT-4o in identifying such items, given the cultural background of the reader; the results are mixed, implying a significant scope for improvement. Our datasets are available here: https://github.com/sougata-ub/reading_between_lines
Towards Understanding the Robustness of LLM-based Evaluations under Perturbations
Chaudhary, Manav, Gupta, Harshit, Bhat, Savita, Varma, Vasudeva
Traditional evaluation metrics like BLEU and ROUGE fall short when capturing the nuanced qualities of generated text, particularly when there is no single ground truth. In this paper, we explore the potential of Large Language Models (LLMs), specifically Google Gemini 1, to serve as automatic evaluators for non-standardized metrics in summarization and dialog-based tasks. We conduct experiments across multiple prompting strategies to examine how LLMs fare as quality evaluators when compared with human judgments on the SummEval and USR datasets, asking the model to generate both a score as well as a justification for the score. Furthermore, we explore the robustness of the LLM evaluator by using perturbed inputs. Our findings suggest that while LLMs show promise, their alignment with human evaluators is limited, they are not robust against perturbations and significant improvements are required for their standalone use as reliable evaluators for subjective metrics.
iREL at SemEval-2024 Task 9: Improving Conventional Prompting Methods for Brain Teasers
Gupta, Harshit, Chaudhary, Manav, Raha, Tathagata, Subramanian, Shivansh, Varma, Vasudeva
This paper describes our approach for SemEval-2024 Task 9: BRAINTEASER: A Novel Task Defying Common Sense. The BRAINTEASER task comprises multiple-choice Question Answering designed to evaluate the models' lateral thinking capabilities. It consists of Sentence Puzzle and Word Puzzle subtasks that require models to defy default common-sense associations and exhibit unconventional thinking. We propose a unique strategy to improve the performance of pre-trained language models, notably the Gemini 1.0 Pro Model, in both subtasks. We employ static and dynamic few-shot prompting techniques and introduce a model-generated reasoning strategy that utilizes the LLM's reasoning capabilities to improve performance. Our approach demonstrated significant improvements, showing that it performed better than the baseline models by a considerable margin but fell short of performing as well as the human annotators, thus highlighting the efficacy of the proposed strategies.
BrainStorm @ iREL at SMM4H 2024: Leveraging Translation and Topical Embeddings for Annotation Detection in Tweets
Chaudhary, Manav, Gupta, Harshit, Varma, Vasudeva
The proliferation of LLMs in various NLP tasks has sparked debates regarding their reliability, particularly in annotation tasks where biases and hallucinations may arise. In this shared task, we address the challenge of distinguishing annotations made by LLMs from those made by human domain experts in the context of COVID-19 symptom detection from tweets in Latin American Spanish. This paper presents BrainStorm @ iREL's approach to the SMM4H 2024 Shared Task, leveraging the inherent topical information in tweets, we propose a novel approach to identify and classify annotations, aiming to enhance the trustworthiness of annotated data.
Neural models for Factual Inconsistency Classification with Explanations
Raha, Tathagata, Choudhary, Mukund, Menon, Abhinav, Gupta, Harshit, Srivatsa, KV Aditya, Gupta, Manish, Varma, Vasudeva
Factual consistency is one of the most important requirements when editing high quality documents. It is extremely important for automatic text generation systems like summarization, question answering, dialog modeling, and language modeling. Still, automated factual inconsistency detection is rather under-studied. Existing work has focused on (a) finding fake news keeping a knowledge base in context, or (b) detecting broad contradiction (as part of natural language inference literature). However, there has been no work on detecting and explaining types of factual inconsistencies in text, without any knowledge base in context. In this paper, we leverage existing work in linguistics to formally define five types of factual inconsistencies. Based on this categorization, we contribute a novel dataset, FICLE (Factual Inconsistency CLassification with Explanation), with ~8K samples where each sample consists of two sentences (claim and context) annotated with type and span of inconsistency. When the inconsistency relates to an entity type, it is labeled as well at two levels (coarse and fine-grained). Further, we leverage this dataset to train a pipeline of four neural models to predict inconsistency type with explanations, given a (claim, context) sentence pair. Explanations include inconsistent claim fact triple, inconsistent context span, inconsistent claim component, coarse and fine-grained inconsistent entity types. The proposed system first predicts inconsistent spans from claim and context; and then uses them to predict inconsistency types and inconsistent entity types (when inconsistency is due to entities). We experiment with multiple Transformer-based natural language classification as well as generative models, and find that DeBERTa performs the best. Our proposed methods provide a weighted F1 of ~87% for inconsistency type classification across the five classes.
Assessment of DeepONet for reliability analysis of stochastic nonlinear dynamical systems
Garg, Shailesh, Gupta, Harshit, Chakraborty, Souvik
Time dependent reliability analysis and uncertainty quantification of structural system subjected to stochastic forcing function is a challenging endeavour as it necessitates considerable computational time. We investigate the efficacy of recently proposed DeepONet in solving time dependent reliability analysis and uncertainty quantification of systems subjected to stochastic loading. Unlike conventional machine learning and deep learning algorithms, DeepONet learns is a operator network and learns a function to function mapping and hence, is ideally suited to propagate the uncertainty from the stochastic forcing function to the output responses. We use DeepONet to build a surrogate model for the dynamical system under consideration. Multiple case studies, involving both toy and benchmark problems, have been conducted to examine the efficacy of DeepONet in time dependent reliability analysis and uncertainty quantification of linear and nonlinear dynamical systems. Results obtained indicate that the DeepONet architecture is accurate as well as efficient. Moreover, DeepONet posses zero shot learning capabilities and hence, a trained model easily generalizes to unseen and new environment with no further training.