Goto

Collaborating Authors

 Guo, Zirun


ConceptGuard: Continual Personalized Text-to-Image Generation with Forgetting and Confusion Mitigation

arXiv.org Artificial Intelligence

Diffusion customization methods have achieved impressive results with only a minimal number of user-provided images. However, existing approaches customize concepts collectively, whereas real-world applications often require sequential concept integration. This sequential nature can lead to catastrophic forgetting, where previously learned concepts are lost. In this paper, we investigate concept forgetting and concept confusion in the continual customization. T o tackle these challenges, we present ConceptGuard, a comprehensive approach that combines shift embedding, concept-binding prompts and memory preservation regularization, supplemented by a priority queue which can adap-tively update the importance and occurrence order of different concepts. These strategies can dynamically update, unbind and learn the relationship of the previous concepts, thus alleviating concept forgetting and confusion. Through comprehensive experiments, we show that our approach outperforms all the baseline methods consistently and significantly in both quantitative and qualitative analyses.


Efficient Prompting for Continual Adaptation to Missing Modalities

arXiv.org Artificial Intelligence

Missing modality issues are common in real-world applications, arising from factors such as equipment failures and privacy concerns. When fine-tuning pre-trained models on downstream datasets with missing modalities, performance can degrade significantly. Current methods often aggregate various missing cases to train recovery modules or align multimodal features, resulting in suboptimal performance, high computational costs, and the risk of catastrophic forgetting in continual environments where data arrives sequentially. In this paper, we formulate the dynamic missing modality problem as a continual learning task and introduce the continual multimodal missing modality task. To address this challenge efficiently, we introduce three types of prompts: modality-specific, task-aware, and task-specific prompts. These prompts enable the model to learn intra-modality, inter-modality, intra-task, and inter-task features. Furthermore, we propose a contrastive task interaction strategy to explicitly learn prompts correlating different modalities. We conduct extensive experiments on three public datasets, where our method consistently outperforms state-of-the-art approaches.


A Wander Through the Multimodal Landscape: Efficient Transfer Learning via Low-rank Sequence Multimodal Adapter

arXiv.org Artificial Intelligence

Efficient transfer learning methods such as adapter-based methods have shown great success in unimodal models and vision-language models. However, existing methods have two main challenges in fine-tuning multimodal models. Firstly, they are designed for vision-language tasks and fail to extend to situations where there are more than two modalities. Secondly, they exhibit limited exploitation of interactions between modalities and lack efficiency. To address these issues, in this paper, we propose the loW-rank sequence multimodal adapter (Wander). We first use the outer product to fuse the information from different modalities in an element-wise way effectively. For efficiency, we use CP decomposition to factorize tensors into rank-one components and achieve substantial parameter reduction. Furthermore, we implement a token-level low-rank decomposition to extract more fine-grained features and sequence relationships between modalities. With these designs, Wander enables token-level interactions between sequences of different modalities in a parameter-efficient way. We conduct extensive experiments on datasets with different numbers of modalities, where Wander outperforms state-of-the-art efficient transfer learning methods consistently. The results fully demonstrate the effectiveness, efficiency and universality of Wander.


Bridging the Gap for Test-Time Multimodal Sentiment Analysis

arXiv.org Artificial Intelligence

Multimodal sentiment analysis (MSA) is an emerging research topic that aims to understand and recognize human sentiment or emotions through multiple modalities. However, in real-world dynamic scenarios, the distribution of target data is always changing and different from the source data used to train the model, which leads to performance degradation. Common adaptation methods usually need source data, which could pose privacy issues or storage overheads. Therefore, test-time adaptation (TTA) methods are introduced to improve the performance of the model at inference time. Existing TTA methods are always based on probabilistic models and unimodal learning, and thus can not be applied to MSA which is often considered as a multimodal regression task. In this paper, we propose two strategies: Contrastive Adaptation and Stable Pseudo-label generation (CASP) for test-time adaptation for multimodal sentiment analysis. The two strategies deal with the distribution shifts for MSA by enforcing consistency and minimizing empirical risk, respectively. Extensive experiments show that CASP brings significant and consistent improvements to the performance of the model across various distribution shift settings and with different backbones, demonstrating its effectiveness and versatility. Our codes are available at https://github.com/zrguo/CASP.


Classifier-guided Gradient Modulation for Enhanced Multimodal Learning

arXiv.org Artificial Intelligence

Multimodal learning has developed very fast in recent years. However, during the multimodal training process, the model tends to rely on only one modality based on which it could learn faster, thus leading to inadequate use of other modalities. Existing methods to balance the training process always have some limitations on the loss functions, optimizers and the number of modalities and only consider modulating the magnitude of the gradients while ignoring the directions of the gradients. To solve these problems, in this paper, we present a novel method to balance multimodal learning with Classifier-Guided Gradient Modulation (CGGM), considering both the magnitude and directions of the gradients. We conduct extensive experiments on four multimodal datasets: UPMC-Food 101, CMU-MOSI, IEMOCAP and BraTS 2021, covering classification, regression and segmentation tasks. The results show that CGGM outperforms all the baselines and other state-of-the-art methods consistently, demonstrating its effectiveness and versatility. Our code is available at https://github.com/zrguo/CGGM.


Multimodal Prompt Learning with Missing Modalities for Sentiment Analysis and Emotion Recognition

arXiv.org Artificial Intelligence

The development of multimodal models has significantly advanced multimodal sentiment analysis and emotion recognition. However, in real-world applications, the presence of various missing modality cases often leads to a degradation in the model's performance. In this work, we propose a novel multimodal Transformer framework using prompt learning to address the issue of missing modalities. Our method introduces three types of prompts: generative prompts, missing-signal prompts, and missing-type prompts. These prompts enable the generation of missing modality features and facilitate the learning of intra- and inter-modality information. Through prompt learning, we achieve a substantial reduction in the number of trainable parameters. Our proposed method outperforms other methods significantly across all evaluation metrics. Extensive experiments and ablation studies are conducted to demonstrate the effectiveness and robustness of our method, showcasing its ability to effectively handle missing modalities.