Goto

Collaborating Authors

 Gong, Xueluan


ARMOR: Shielding Unlearnable Examples against Data Augmentation

arXiv.org Artificial Intelligence

Private data, when published online, may be collected by unauthorized parties to train deep neural networks (DNNs). To protect privacy, defensive noises can be added to original samples to degrade their learnability by DNNs. Recently, unlearnable examples are proposed to minimize the training loss such that the model learns almost nothing. However, raw data are often pre-processed before being used for training, which may restore the private information of protected data. In this paper, we reveal the data privacy violation induced by data augmentation, a commonly used data pre-processing technique to improve model generalization capability, which is the first of its kind as far as we are concerned. We demonstrate that data augmentation can significantly raise the accuracy of the model trained on unlearnable examples from 21.3% to 66.1%. To address this issue, we propose a defense framework, dubbed ARMOR, to protect data privacy from potential breaches of data augmentation. To overcome the difficulty of having no access to the model training process, we design a non-local module-assisted surrogate model that better captures the effect of data augmentation. In addition, we design a surrogate augmentation selection strategy that maximizes distribution alignment between augmented and non-augmented samples, to choose the optimal augmentation strategy for each class. We also use a dynamic step size adjustment algorithm to enhance the defensive noise generation process. Extensive experiments are conducted on 4 datasets and 5 data augmentation methods to verify the performance of ARMOR. Comparisons with 6 state-of-the-art defense methods have demonstrated that ARMOR can preserve the unlearnability of protected private data under data augmentation. ARMOR reduces the test accuracy of the model trained on augmented protected samples by as much as 60% more than baselines.


Hidden Data Privacy Breaches in Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) emerged as a paradigm for conducting machine learning across broad and decentralized datasets, promising enhanced privacy by obviating the need for direct data sharing. However, recent studies show that attackers can steal private data through model manipulation or gradient analysis. Existing attacks are constrained by low theft quantity or low-resolution data, and they are often detected through anomaly monitoring in gradients or weights. In this paper, we propose a novel data-reconstruction attack leveraging malicious code injection, supported by two key techniques, i.e., distinctive and sparse encoding design and block partitioning. Unlike conventional methods that require detectable changes to the model, our method stealthily embeds a hidden model using parameter sharing to systematically extract sensitive data. The Fibonacci-based index design ensures efficient, structured retrieval of memorized data, while the block partitioning method enhances our method's capability to handle high-resolution images by dividing them into smaller, manageable units. Extensive experiments on 4 datasets confirmed that our method is superior to the five state-of-the-art data-reconstruction attacks under the five respective detection methods. Our method can handle large-scale and high-resolution data without being detected or mitigated by state-of-the-art data reconstruction defense methods. In contrast to baselines, our method can be directly applied to both FedAVG and FedSGD scenarios, underscoring the need for developers to devise new defenses against such vulnerabilities. We will open-source our code upon acceptance.


Neutralizing Backdoors through Information Conflicts for Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have seen significant advancements, achieving superior performance in various Natural Language Processing (NLP) tasks, from understanding to reasoning. However, they remain vulnerable to backdoor attacks, where models behave normally for standard queries but generate harmful responses or unintended output when specific triggers are activated. Existing backdoor defenses often suffer from drawbacks that they either focus on detection without removal, rely on rigid assumptions about trigger properties, or prove to be ineffective against advanced attacks like multi-trigger backdoors. In this paper, we present a novel method to eliminate backdoor behaviors from LLMs through the construction of information conflicts using both internal and external mechanisms. Internally, we leverage a lightweight dataset to train a conflict model, which is then merged with the backdoored model to neutralize malicious behaviors by embedding contradictory information within the model's parametric memory. Externally, we incorporate convincing contradictory evidence into the prompt to challenge the model's internal backdoor knowledge. Experimental results on classification and conversational tasks across 4 widely used LLMs demonstrate that our method outperforms 8 state-of-the-art backdoor defense baselines. We can reduce the attack success rate of advanced backdoor attacks by up to 98% while maintaining over 90% clean data accuracy. Furthermore, our method has proven to be robust against adaptive backdoor attacks. The code will be open-sourced upon publication.


Effective and Evasive Fuzz Testing-Driven Jailbreaking Attacks against LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have excelled in various tasks but are still vulnerable to jailbreaking attacks, where attackers create jailbreak prompts to mislead the model to produce harmful or offensive content. Current jailbreak methods either rely heavily on manually crafted templates, which pose challenges in scalability and adaptability, or struggle to generate semantically coherent prompts, making them easy to detect. Additionally, most existing approaches involve lengthy prompts, leading to higher query costs.In this paper, to remedy these challenges, we introduce a novel jailbreaking attack framework, which is an automated, black-box jailbreaking attack framework that adapts the black-box fuzz testing approach with a series of customized designs. Instead of relying on manually crafted templates, our method starts with an empty seed pool, removing the need to search for any related jailbreaking templates. We also develop three novel question-dependent mutation strategies using an LLM helper to generate prompts that maintain semantic coherence while significantly reducing their length. Additionally, we implement a two-level judge module to accurately detect genuine successful jailbreaks. We evaluated our method on 7 representative LLMs and compared it with 5 state-of-the-art jailbreaking attack strategies. For proprietary LLM APIs, such as GPT-3.5 turbo, GPT-4, and Gemini-Pro, our method achieves attack success rates of over 90%,80% and 74%, respectively, exceeding existing baselines by more than 60%. Additionally, our method can maintain high semantic coherence while significantly reducing the length of jailbreak prompts. When targeting GPT-4, our method can achieve over 78% attack success rate even with 100 tokens. Moreover, our method demonstrates transferability and is robust to state-of-the-art defenses. We will open-source our codes upon publication.


Leveraging Label Information for Stealthy Data Stealing in Vertical Federated Learning

arXiv.org Artificial Intelligence

We develop DMAVFL, a novel attack strategy that evades current detection mechanisms. The key idea is to integrate a discriminator with auxiliary classifier that takes a full advantage of the label information (which was completely ignored in previous attacks): on one hand, label information helps to better characterize embeddings of samples from distinct classes, yielding an improved reconstruction performance; on the other hand, computing malicious gradients with label information better mimics the honest training, making the malicious gradients indistinguishable from the honest ones, and the attack much more stealthy. Our comprehensive experiments demonstrate that DMAVFL significantly outperforms existing attacks, and successfully circumvents SOTA defenses for malicious attacks. Additional ablation studies and evaluations on other defenses further underscore the robustness and effectiveness of DMAVFL.


Backdoor Attack with Sparse and Invisible Trigger

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) are vulnerable to backdoor attacks, where the adversary manipulates a small portion of training data such that the victim model predicts normally on the benign samples but classifies the triggered samples as the target class. The backdoor attack is an emerging yet threatening training-phase threat, leading to serious risks in DNN-based applications. In this paper, we revisit the trigger patterns of existing backdoor attacks. We reveal that they are either visible or not sparse and therefore are not stealthy enough. More importantly, it is not feasible to simply combine existing methods to design an effective sparse and invisible backdoor attack. To address this problem, we formulate the trigger generation as a bi-level optimization problem with sparsity and invisibility constraints and propose an effective method to solve it. The proposed method is dubbed sparse and invisible backdoor attack (SIBA). We conduct extensive experiments on benchmark datasets under different settings, which verify the effectiveness of our attack and its resistance to existing backdoor defenses. The codes for reproducing main experiments are available at \url{https://github.com/YinghuaGao/SIBA}.


Catch You and I Can: Revealing Source Voiceprint Against Voice Conversion

arXiv.org Artificial Intelligence

Voice conversion (VC) techniques can be abused by malicious parties to transform their audios to sound like a target speaker, making it hard for a human being or a speaker verification/identification system to trace the source speaker. In this paper, we make the first attempt to restore the source voiceprint from audios synthesized by voice conversion methods with high credit. However, unveiling the features of the source speaker from a converted audio is challenging since the voice conversion operation intends to disentangle the original features and infuse the features of the target speaker. To fulfill our goal, we develop Revelio, a representation learning model, which learns to effectively extract the voiceprint of the source speaker from converted audio samples. We equip Revelio with a carefully-designed differential rectification algorithm to eliminate the influence of the target speaker by removing the representation component that is parallel to the voiceprint of the target speaker. We have conducted extensive experiments to evaluate the capability of Revelio in restoring voiceprint from audios converted by VQVC, VQVC+, AGAIN, and BNE. The experiments verify that Revelio is able to rebuild voiceprints that can be traced to the source speaker by speaker verification and identification systems. Revelio also exhibits robust performance under inter-gender conversion, unseen languages, and telephony networks.