Goto

Collaborating Authors

 Ghosal, Promit


LoSAM: Local Search in Additive Noise Models with Unmeasured Confounders, a Top-Down Global Discovery Approach

arXiv.org Artificial Intelligence

We address the challenge of causal discovery in structural equation models with additive noise without imposing additional assumptions on the underlying data-generating process. We introduce local search in additive noise model (LoSAM), which generalizes an existing nonlinear method that leverages local causal substructures to the general additive noise setting, allowing for both linear and nonlinear causal mechanisms. We show that LoSAM achieves polynomial runtime, and improves runtime and efficiency by exploiting new substructures to minimize the conditioning set at each step. Further, we introduce a variant of LoSAM, LoSAM-UC, that is robust to unmeasured confounding among roots, a property that is often not satisfied by functional-causal-model-based methods. We numerically demonstrate the utility of LoSAM, showing that it outperforms existing benchmarks.


Hybrid Global Causal Discovery with Local Search

arXiv.org Artificial Intelligence

Learning the unique directed acyclic graph corresponding to an unknown causal model is a challenging task. Methods based on functional causal models can identify a unique graph, but either suffer from the curse of dimensionality or impose strong parametric assumptions. To address these challenges, we propose a novel hybrid approach for global causal discovery in observational data that leverages local causal substructures. We first present a topological sorting algorithm that leverages ancestral relationships in linear structural equation models to establish a compact top-down hierarchical ordering, encoding more causal information than linear orderings produced by existing methods. We demonstrate that this approach generalizes to nonlinear settings with arbitrary noise. We then introduce a nonparametric constraint-based algorithm that prunes spurious edges by searching for local conditioning sets, achieving greater accuracy than current methods. We provide theoretical guarantees for correctness and worst-case polynomial time complexities, with empirical validation on synthetic data.


Towards Understanding the Dynamics of Gaussian-Stein Variational Gradient Descent

arXiv.org Machine Learning

Stein Variational Gradient Descent (SVGD) is a nonparametric particle-based deterministic sampling algorithm. Despite its wide usage, understanding the theoretical properties of SVGD has remained a challenging problem. For sampling from a Gaussian target, the SVGD dynamics with a bilinear kernel will remain Gaussian as long as the initializer is Gaussian. Inspired by this fact, we undertake a detailed theoretical study of the Gaussian-SVGD, i.e., SVGD projected to the family of Gaussian distributions via the bilinear kernel, or equivalently Gaussian variational inference (GVI) with SVGD. We present a complete picture by considering both the mean-field PDE and discrete particle systems. When the target is strongly log-concave, the mean-field Gaussian-SVGD dynamics is proven to converge linearly to the Gaussian distribution closest to the target in KL divergence. In the finite-particle setting, there is both uniform in time convergence to the mean-field limit and linear convergence in time to the equilibrium if the target is Gaussian. In the general case, we propose a density-based and a particle-based implementation of the Gaussian-SVGD, and show that several recent algorithms for GVI, proposed from different perspectives, emerge as special cases of our unified framework. Interestingly, one of the new particle-based instance from this framework empirically outperforms existing approaches. Our results make concrete contributions towards obtaining a deeper understanding of both SVGD and GVI.


Randomly Initialized One-Layer Neural Networks Make Data Linearly Separable

arXiv.org Machine Learning

Recently, neural networks have demonstrated remarkable capabilities in mapping two arbitrary sets to two linearly separable sets. The prospect of achieving this with randomly initialized neural networks is particularly appealing due to the computational efficiency compared to fully trained networks. This paper contributes by establishing that, given sufficient width, a randomly initialized one-layer neural network can, with high probability, transform two sets into two linearly separable sets without any training. Moreover, we furnish precise bounds on the necessary width of the neural network for this phenomenon to occur. Our initial bound exhibits exponential dependence on the input dimension while maintaining polynomial dependence on all other parameters. In contrast, our second bound is independent of input dimension, effectively surmounting the curse of dimensionality. The main tools used in our proof heavily relies on a fusion of geometric principles and concentration of random matrices.


From Stability to Chaos: Analyzing Gradient Descent Dynamics in Quadratic Regression

arXiv.org Machine Learning

We conduct a comprehensive investigation into the dynamics of gradient descent using large-order constant step-sizes in the context of quadratic regression models. Within this framework, we reveal that the dynamics can be encapsulated by a specific cubic map, naturally parameterized by the step-size. Through a fine-grained bifurcation analysis concerning the step-size parameter, we delineate five distinct training phases: (1) monotonic, (2) catapult, (3) periodic, (4) chaotic, and (5) divergent, precisely demarcating the boundaries of each phase. As illustrations, we provide examples involving phase retrieval and two-layer neural networks employing quadratic activation functions and constant outer-layers, utilizing orthogonal training data. Our simulations indicate that these five phases also manifest with generic non-orthogonal data. We also empirically investigate the generalization performance when training in the various non-monotonic (and non-divergent) phases. In particular, we observe that performing an ergodic trajectory averaging stabilizes the test error in non-monotonic (and non-divergent) phases.


High-dimensional scaling limits and fluctuations of online least-squares SGD with smooth covariance

arXiv.org Machine Learning

We derive high-dimensional scaling limits and fluctuations for the online least-squares Stochastic Gradient Descent (SGD) algorithm by taking the properties of the data generating model explicitly into consideration. Our approach treats the SGD iterates as an interacting particle system, where the expected interaction is characterized by the covariance structure of the input. Assuming smoothness conditions on moments of order up to eight orders, and without explicitly assuming Gaussianity, we establish the high-dimensional scaling limits and fluctuations in the form of infinite-dimensional Ordinary Differential Equations (ODEs) or Stochastic Differential Equations (SDEs). Our results reveal a precise three-step phase transition of the iterates; it goes from being ballistic, to diffusive, and finally to purely random behavior, as the noise variance goes from low, to moderate and finally to very-high noise setting. In the low-noise setting, we further characterize the precise fluctuations of the (scaled) iterates as infinite-dimensional SDEs. We also show the existence and uniqueness of solutions to the derived limiting ODEs and SDEs. Our results have several applications, including characterization of the limiting mean-square estimation or prediction errors and their fluctuations which can be obtained by analytically or numerically solving the limiting equations.


High-dimensional Central Limit Theorems for Linear Functionals of Online Least-Squares SGD

arXiv.org Machine Learning

Stochastic gradient descent (SGD) has emerged as the quintessential method in a data scientist's toolbox. Much progress has been made in the last two decades toward understanding the iteration complexity of SGD (in expectation and high-probability) in the learning theory and optimization literature. However, using SGD for high-stakes applications requires careful quantification of the associated uncertainty. Toward that end, in this work, we establish high-dimensional Central Limit Theorems (CLTs) for linear functionals of online least-squares SGD iterates under a Gaussian design assumption. Our main result shows that a CLT holds even when the dimensionality is of order exponential in the number of iterations of the online SGD, thereby enabling high-dimensional inference with online SGD. Our proof technique involves leveraging Berry-Esseen bounds developed for martingale difference sequences and carefully evaluating the required moment and quadratic variation terms through recent advances in concentration inequalities for product random matrices. We also provide an online approach for estimating the variance appearing in the CLT (required for constructing confidence intervals in practice) and establish consistency results in the high-dimensional setting.


Rates of Estimation of Optimal Transport Maps using Plug-in Estimators via Barycentric Projections

arXiv.org Machine Learning

Optimal transport maps between two probability distributions $\mu$ and $\nu$ on $\mathbb{R}^d$ have found extensive applications in both machine learning and statistics. In practice, these maps need to be estimated from data sampled according to $\mu$ and $\nu$. Plug-in estimators are perhaps most popular in estimating transport maps in the field of computational optimal transport. In this paper, we provide a comprehensive analysis of the rates of convergences for general plug-in estimators defined via barycentric projections. Our main contribution is a new stability estimate for barycentric projections which proceeds under minimal smoothness assumptions and can be used to analyze general plug-in estimators. We illustrate the usefulness of this stability estimate by first providing rates of convergence for the natural discrete-discrete and semi-discrete estimators of optimal transport maps. We then use the same stability estimate to show that, under additional smoothness assumptions of Besov type or Sobolev type, wavelet based or kernel smoothed plug-in estimators respectively speed up the rates of convergence and significantly mitigate the curse of dimensionality suffered by the natural discrete-discrete/semi-discrete estimators. As a by-product of our analysis, we also obtain faster rates of convergence for plug-in estimators of $W_2(\mu,\nu)$, the Wasserstein distance between $\mu$ and $\nu$, under the aforementioned smoothness assumptions, thereby complementing recent results in Chizat et al. (2020). Finally, we illustrate the applicability of our results in obtaining rates of convergence for Wasserstein barycenters between two probability distributions and obtaining asymptotic detection thresholds for some recent optimal-transport based tests of independence.