Gerstenberg, Tobias
Imagining and building wise machines: The centrality of AI metacognition
Johnson, Samuel G. B., Karimi, Amir-Hossein, Bengio, Yoshua, Chater, Nick, Gerstenberg, Tobias, Larson, Kate, Levine, Sydney, Mitchell, Melanie, Rahwan, Iyad, Schölkopf, Bernhard, Grossmann, Igor
Recent advances in artificial intelligence (AI) have produced systems capable of increasingly sophisticated performance on cognitive tasks. However, AI systems still struggle in critical ways: unpredictable and novel environments (robustness), lack of transparency in their reasoning (explainability), challenges in communication and commitment (cooperation), and risks due to potential harmful actions (safety). We argue that these shortcomings stem from one overarching failure: AI systems lack wisdom. Drawing from cognitive and social sciences, we define wisdom as the ability to navigate intractable problems - those that are ambiguous, radically uncertain, novel, chaotic, or computationally explosive - through effective task-level and metacognitive strategies. While AI research has focused on task-level strategies, metacognition - the ability to reflect on and regulate one's thought processes - is underdeveloped in AI systems. In humans, metacognitive strategies such as recognizing the limits of one's knowledge, considering diverse perspectives, and adapting to context are essential for wise decision-making. We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety. By focusing on developing wise AI, we suggest an alternative to aligning AI with specific human values - a task fraught with conceptual and practical difficulties. Instead, wise AI systems can thoughtfully navigate complex situations, account for diverse human values, and avoid harmful actions. We discuss potential approaches to building wise AI, including benchmarking metacognitive abilities and training AI systems to employ wise reasoning. Prioritizing metacognition in AI research will lead to systems that act not only intelligently but also wisely in complex, real-world situations.
MARPLE: A Benchmark for Long-Horizon Inference
Jin, Emily, Huang, Zhuoyi, Fränken, Jan-Philipp, Liu, Weiyu, Cha, Hannah, Brockbank, Erik, Wu, Sarah, Zhang, Ruohan, Wu, Jiajun, Gerstenberg, Tobias
Reconstructing past events requires reasoning across long time horizons. To figure out what happened, we need to use our prior knowledge about the world and human behavior and draw inferences from various sources of evidence including visual, language, and auditory cues. We introduce MARPLE, a benchmark for evaluating long-horizon inference capabilities using multi-modal evidence. Our benchmark features agents interacting with simulated households, supporting vision, language, and auditory stimuli, as well as procedurally generated environments and agent behaviors. Inspired by classic ``whodunit'' stories, we ask AI models and human participants to infer which agent caused a change in the environment based on a step-by-step replay of what actually happened. The goal is to correctly identify the culprit as early as possible. Our findings show that human participants outperform both traditional Monte Carlo simulation methods and an LLM baseline (GPT-4) on this task. Compared to humans, traditional inference models are less robust and performant, while GPT-4 has difficulty comprehending environmental changes. We analyze what factors influence inference performance and ablate different modes of evidence, finding that all modes are valuable for performance. Overall, our experiments demonstrate that the long-horizon, multimodal inference tasks in our benchmark present a challenge to current models.
Self-Supervised Alignment with Mutual Information: Learning to Follow Principles without Preference Labels
Fränken, Jan-Philipp, Zelikman, Eric, Rafailov, Rafael, Gandhi, Kanishk, Gerstenberg, Tobias, Goodman, Noah D.
When prompting a language model (LM), users often expect the model to adhere to a set of behavioral principles across diverse tasks, such as producing insightful content while avoiding harmful or biased language. Instilling such principles (i.e., a constitution) into a model is resource-intensive, technically challenging, and generally requires human preference labels or examples. We introduce SAMI, an iterative algorithm that finetunes a pretrained language model (without requiring preference labels or demonstrations) to increase the conditional mutual information between constitutions and self-generated responses given queries from a dataset. On single-turn dialogue and summarization, a SAMI-trained mistral-7b outperforms the initial pretrained model, with win rates between 66% and 77%. Strikingly, it also surpasses an instruction-finetuned baseline (mistral-7b-instruct) with win rates between 55% and 57% on single-turn dialogue. SAMI requires a model that writes the principles. To avoid dependence on strong models for writing principles, we align a strong pretrained model (mixtral-8x7b) using constitutions written by a weak instruction-finetuned model (mistral-7b-instruct), achieving a 65% win rate on summarization. Finally, we investigate whether SAMI generalizes to diverse summarization principles (e.g., "summaries should be scientific") and scales to stronger models (llama3-70b), finding that it achieves win rates of up to 68% for learned and 67% for held-out principles compared to the base model. Our results show that a pretrained LM can learn to follow constitutions without using preference labels, demonstrations, or human oversight.
Procedural Dilemma Generation for Evaluating Moral Reasoning in Humans and Language Models
Fränken, Jan-Philipp, Gandhi, Kanishk, Qiu, Tori, Khawaja, Ayesha, Goodman, Noah D., Gerstenberg, Tobias
As AI systems like language models are increasingly integrated into decision-making processes affecting people's lives, it's critical to ensure that these systems have sound moral reasoning. To test whether they do, we need to develop systematic evaluations. We provide a framework that uses a language model to translate causal graphs that capture key aspects of moral dilemmas into prompt templates. With this framework, we procedurally generated a large and diverse set of moral dilemmas -- the OffTheRails benchmark -- consisting of 50 scenarios and 400 unique test items. We collected moral permissibility and intention judgments from human participants for a subset of our items and compared these judgments to those from two language models (GPT-4 and Claude-2) across eight conditions. We find that moral dilemmas in which the harm is a necessary means (as compared to a side effect) resulted in lower permissibility and higher intention ratings for both participants and language models. The same pattern was observed for evitable versus inevitable harmful outcomes. However, there was no clear effect of whether the harm resulted from an agent's action versus from having omitted to act. We discuss limitations of our prompt generation pipeline and opportunities for improving scenarios to increase the strength of experimental effects.
STaR-GATE: Teaching Language Models to Ask Clarifying Questions
Andukuri, Chinmaya, Fränken, Jan-Philipp, Gerstenberg, Tobias, Goodman, Noah D.
When prompting language models to complete a task, users often leave important aspects unsaid. While asking questions could resolve this ambiguity (GATE; Li et al., 2023), models often struggle to ask good questions. We explore a language model's ability to self-improve (STaR; Zelikman et al., 2022) by rewarding the model for generating useful questions-a simple method we dub STaR-GATE. We generate a synthetic dataset of 25,500 unique persona-task prompts to simulate conversations between a pretrained language model-the Questioner-and a Roleplayer whose preferences are unknown to the Questioner. By asking questions, the Questioner elicits preferences from the Roleplayer. The Questioner is iteratively finetuned on questions that increase the probability of high-quality responses to the task, which are generated by an Oracle with access to the Roleplayer's latent preferences. After two iterations of self-improvement, the Questioner asks better questions, allowing it to generate responses that are preferred over responses from the initial model on 72% of tasks. Our results indicate that teaching a language model to ask better questions leads to better personalized responses.
Understanding Social Reasoning in Language Models with Language Models
Gandhi, Kanishk, Fränken, Jan-Philipp, Gerstenberg, Tobias, Goodman, Noah D.
As Large Language Models (LLMs) become increasingly integrated into our everyday lives, understanding their ability to comprehend human mental states becomes critical for ensuring effective interactions. However, despite the recent attempts to assess the Theory-of-Mind (ToM) reasoning capabilities of LLMs, the degree to which these models can align with human ToM remains a nuanced topic of exploration. This is primarily due to two distinct challenges: (1) the presence of inconsistent results from previous evaluations, and (2) concerns surrounding the validity of existing evaluation methodologies. To address these challenges, we present a novel framework for procedurally generating evaluations with LLMs by populating causal templates. Using our framework, we create a new social reasoning benchmark (BigToM) for LLMs which consists of 25 controls and 5,000 model-written evaluations. We find that human participants rate the quality of our benchmark higher than previous crowd-sourced evaluations and comparable to expert-written evaluations. Using BigToM, we evaluate the social reasoning capabilities of a variety of LLMs and compare model performances with human performance. Our results suggest that GPT4 has ToM capabilities that mirror human inference patterns, though less reliable, while other LLMs struggle.
Social Contract AI: Aligning AI Assistants with Implicit Group Norms
Fränken, Jan-Philipp, Kwok, Sam, Ye, Peixuan, Gandhi, Kanishk, Arumugam, Dilip, Moore, Jared, Tamkin, Alex, Gerstenberg, Tobias, Goodman, Noah D.
We explore the idea of aligning an AI assistant by inverting a model of users' (unknown) preferences from observed interactions. To validate our proposal, we run proof-of-concept simulations in the economic ultimatum game, formalizing user preferences as policies that guide the actions of simulated players. We find that the AI assistant accurately aligns its behavior to match standard policies from the economic literature (e.g., selfish, altruistic). However, the assistant's learned policies lack robustness and exhibit limited generalization in an out-of-distribution setting when confronted with a currency (e.g., grams of medicine) that was not included in the assistant's training distribution. Additionally, we find that when there is inconsistency in the relationship between language use and an unknown policy (e.g., an altruistic policy combined with rude language), the assistant's learning of the policy is slowed. Overall, our preliminary results suggest that developing simulation frameworks in which AI assistants need to infer preferences from diverse users can provide a valuable approach for studying practical alignment questions.
MoCa: Measuring Human-Language Model Alignment on Causal and Moral Judgment Tasks
Nie, Allen, Zhang, Yuhui, Amdekar, Atharva, Piech, Chris, Hashimoto, Tatsunori, Gerstenberg, Tobias
Human commonsense understanding of the physical and social world is organized around intuitive theories. These theories support making causal and moral judgments. When something bad happens, we naturally ask: who did what, and why? A rich literature in cognitive science has studied people's causal and moral intuitions. This work has revealed a number of factors that systematically influence people's judgments, such as the violation of norms and whether the harm is avoidable or inevitable. We collected a dataset of stories from 24 cognitive science papers and developed a system to annotate each story with the factors they investigated. Using this dataset, we test whether large language models (LLMs) make causal and moral judgments about text-based scenarios that align with those of human participants. On the aggregate level, alignment has improved with more recent LLMs. However, using statistical analyses, we find that LLMs weigh the different factors quite differently from human participants. These results show how curated, challenge datasets combined with insights from cognitive science can help us go beyond comparisons based merely on aggregate metrics: we uncover LLMs implicit tendencies and show to what extent these align with human intuitions.
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
Srivastava, Aarohi, Rastogi, Abhinav, Rao, Abhishek, Shoeb, Abu Awal Md, Abid, Abubakar, Fisch, Adam, Brown, Adam R., Santoro, Adam, Gupta, Aditya, Garriga-Alonso, Adrià, Kluska, Agnieszka, Lewkowycz, Aitor, Agarwal, Akshat, Power, Alethea, Ray, Alex, Warstadt, Alex, Kocurek, Alexander W., Safaya, Ali, Tazarv, Ali, Xiang, Alice, Parrish, Alicia, Nie, Allen, Hussain, Aman, Askell, Amanda, Dsouza, Amanda, Slone, Ambrose, Rahane, Ameet, Iyer, Anantharaman S., Andreassen, Anders, Madotto, Andrea, Santilli, Andrea, Stuhlmüller, Andreas, Dai, Andrew, La, Andrew, Lampinen, Andrew, Zou, Andy, Jiang, Angela, Chen, Angelica, Vuong, Anh, Gupta, Animesh, Gottardi, Anna, Norelli, Antonio, Venkatesh, Anu, Gholamidavoodi, Arash, Tabassum, Arfa, Menezes, Arul, Kirubarajan, Arun, Mullokandov, Asher, Sabharwal, Ashish, Herrick, Austin, Efrat, Avia, Erdem, Aykut, Karakaş, Ayla, Roberts, B. Ryan, Loe, Bao Sheng, Zoph, Barret, Bojanowski, Bartłomiej, Özyurt, Batuhan, Hedayatnia, Behnam, Neyshabur, Behnam, Inden, Benjamin, Stein, Benno, Ekmekci, Berk, Lin, Bill Yuchen, Howald, Blake, Orinion, Bryan, Diao, Cameron, Dour, Cameron, Stinson, Catherine, Argueta, Cedrick, Ramírez, César Ferri, Singh, Chandan, Rathkopf, Charles, Meng, Chenlin, Baral, Chitta, Wu, Chiyu, Callison-Burch, Chris, Waites, Chris, Voigt, Christian, Manning, Christopher D., Potts, Christopher, Ramirez, Cindy, Rivera, Clara E., Siro, Clemencia, Raffel, Colin, Ashcraft, Courtney, Garbacea, Cristina, Sileo, Damien, Garrette, Dan, Hendrycks, Dan, Kilman, Dan, Roth, Dan, Freeman, Daniel, Khashabi, Daniel, Levy, Daniel, González, Daniel Moseguí, Perszyk, Danielle, Hernandez, Danny, Chen, Danqi, Ippolito, Daphne, Gilboa, Dar, Dohan, David, Drakard, David, Jurgens, David, Datta, Debajyoti, Ganguli, Deep, Emelin, Denis, Kleyko, Denis, Yuret, Deniz, Chen, Derek, Tam, Derek, Hupkes, Dieuwke, Misra, Diganta, Buzan, Dilyar, Mollo, Dimitri Coelho, Yang, Diyi, Lee, Dong-Ho, Schrader, Dylan, Shutova, Ekaterina, Cubuk, Ekin Dogus, Segal, Elad, Hagerman, Eleanor, Barnes, Elizabeth, Donoway, Elizabeth, Pavlick, Ellie, Rodola, Emanuele, Lam, Emma, Chu, Eric, Tang, Eric, Erdem, Erkut, Chang, Ernie, Chi, Ethan A., Dyer, Ethan, Jerzak, Ethan, Kim, Ethan, Manyasi, Eunice Engefu, Zheltonozhskii, Evgenii, Xia, Fanyue, Siar, Fatemeh, Martínez-Plumed, Fernando, Happé, Francesca, Chollet, Francois, Rong, Frieda, Mishra, Gaurav, Winata, Genta Indra, de Melo, Gerard, Kruszewski, Germán, Parascandolo, Giambattista, Mariani, Giorgio, Wang, Gloria, Jaimovitch-López, Gonzalo, Betz, Gregor, Gur-Ari, Guy, Galijasevic, Hana, Kim, Hannah, Rashkin, Hannah, Hajishirzi, Hannaneh, Mehta, Harsh, Bogar, Hayden, Shevlin, Henry, Schütze, Hinrich, Yakura, Hiromu, Zhang, Hongming, Wong, Hugh Mee, Ng, Ian, Noble, Isaac, Jumelet, Jaap, Geissinger, Jack, Kernion, Jackson, Hilton, Jacob, Lee, Jaehoon, Fisac, Jaime Fernández, Simon, James B., Koppel, James, Zheng, James, Zou, James, Kocoń, Jan, Thompson, Jana, Wingfield, Janelle, Kaplan, Jared, Radom, Jarema, Sohl-Dickstein, Jascha, Phang, Jason, Wei, Jason, Yosinski, Jason, Novikova, Jekaterina, Bosscher, Jelle, Marsh, Jennifer, Kim, Jeremy, Taal, Jeroen, Engel, Jesse, Alabi, Jesujoba, Xu, Jiacheng, Song, Jiaming, Tang, Jillian, Waweru, Joan, Burden, John, Miller, John, Balis, John U., Batchelder, Jonathan, Berant, Jonathan, Frohberg, Jörg, Rozen, Jos, Hernandez-Orallo, Jose, Boudeman, Joseph, Guerr, Joseph, Jones, Joseph, Tenenbaum, Joshua B., Rule, Joshua S., Chua, Joyce, Kanclerz, Kamil, Livescu, Karen, Krauth, Karl, Gopalakrishnan, Karthik, Ignatyeva, Katerina, Markert, Katja, Dhole, Kaustubh D., Gimpel, Kevin, Omondi, Kevin, Mathewson, Kory, Chiafullo, Kristen, Shkaruta, Ksenia, Shridhar, Kumar, McDonell, Kyle, Richardson, Kyle, Reynolds, Laria, Gao, Leo, Zhang, Li, Dugan, Liam, Qin, Lianhui, Contreras-Ochando, Lidia, Morency, Louis-Philippe, Moschella, Luca, Lam, Lucas, Noble, Lucy, Schmidt, Ludwig, He, Luheng, Colón, Luis Oliveros, Metz, Luke, Şenel, Lütfi Kerem, Bosma, Maarten, Sap, Maarten, ter Hoeve, Maartje, Farooqi, Maheen, Faruqui, Manaal, Mazeika, Mantas, Baturan, Marco, Marelli, Marco, Maru, Marco, Quintana, Maria Jose Ramírez, Tolkiehn, Marie, Giulianelli, Mario, Lewis, Martha, Potthast, Martin, Leavitt, Matthew L., Hagen, Matthias, Schubert, Mátyás, Baitemirova, Medina Orduna, Arnaud, Melody, McElrath, Melvin, Yee, Michael A., Cohen, Michael, Gu, Michael, Ivanitskiy, Michael, Starritt, Michael, Strube, Michael, Swędrowski, Michał, Bevilacqua, Michele, Yasunaga, Michihiro, Kale, Mihir, Cain, Mike, Xu, Mimee, Suzgun, Mirac, Walker, Mitch, Tiwari, Mo, Bansal, Mohit, Aminnaseri, Moin, Geva, Mor, Gheini, Mozhdeh, T, Mukund Varma, Peng, Nanyun, Chi, Nathan A., Lee, Nayeon, Krakover, Neta Gur-Ari, Cameron, Nicholas, Roberts, Nicholas, Doiron, Nick, Martinez, Nicole, Nangia, Nikita, Deckers, Niklas, Muennighoff, Niklas, Keskar, Nitish Shirish, Iyer, Niveditha S., Constant, Noah, Fiedel, Noah, Wen, Nuan, Zhang, Oliver, Agha, Omar, Elbaghdadi, Omar, Levy, Omer, Evans, Owain, Casares, Pablo Antonio Moreno, Doshi, Parth, Fung, Pascale, Liang, Paul Pu, Vicol, Paul, Alipoormolabashi, Pegah, Liao, Peiyuan, Liang, Percy, Chang, Peter, Eckersley, Peter, Htut, Phu Mon, Hwang, Pinyu, Miłkowski, Piotr, Patil, Piyush, Pezeshkpour, Pouya, Oli, Priti, Mei, Qiaozhu, Lyu, Qing, Chen, Qinlang, Banjade, Rabin, Rudolph, Rachel Etta, Gabriel, Raefer, Habacker, Rahel, Risco, Ramon, Millière, Raphaël, Garg, Rhythm, Barnes, Richard, Saurous, Rif A., Arakawa, Riku, Raymaekers, Robbe, Frank, Robert, Sikand, Rohan, Novak, Roman, Sitelew, Roman, LeBras, Ronan, Liu, Rosanne, Jacobs, Rowan, Zhang, Rui, Salakhutdinov, Ruslan, Chi, Ryan, Lee, Ryan, Stovall, Ryan, Teehan, Ryan, Yang, Rylan, Singh, Sahib, Mohammad, Saif M., Anand, Sajant, Dillavou, Sam, Shleifer, Sam, Wiseman, Sam, Gruetter, Samuel, Bowman, Samuel R., Schoenholz, Samuel S., Han, Sanghyun, Kwatra, Sanjeev, Rous, Sarah A., Ghazarian, Sarik, Ghosh, Sayan, Casey, Sean, Bischoff, Sebastian, Gehrmann, Sebastian, Schuster, Sebastian, Sadeghi, Sepideh, Hamdan, Shadi, Zhou, Sharon, Srivastava, Shashank, Shi, Sherry, Singh, Shikhar, Asaadi, Shima, Gu, Shixiang Shane, Pachchigar, Shubh, Toshniwal, Shubham, Upadhyay, Shyam, Shyamolima, null, Debnath, null, Shakeri, Siamak, Thormeyer, Simon, Melzi, Simone, Reddy, Siva, Makini, Sneha Priscilla, Lee, Soo-Hwan, Torene, Spencer, Hatwar, Sriharsha, Dehaene, Stanislas, Divic, Stefan, Ermon, Stefano, Biderman, Stella, Lin, Stephanie, Prasad, Stephen, Piantadosi, Steven T., Shieber, Stuart M., Misherghi, Summer, Kiritchenko, Svetlana, Mishra, Swaroop, Linzen, Tal, Schuster, Tal, Li, Tao, Yu, Tao, Ali, Tariq, Hashimoto, Tatsu, Wu, Te-Lin, Desbordes, Théo, Rothschild, Theodore, Phan, Thomas, Wang, Tianle, Nkinyili, Tiberius, Schick, Timo, Kornev, Timofei, Tunduny, Titus, Gerstenberg, Tobias, Chang, Trenton, Neeraj, Trishala, Khot, Tushar, Shultz, Tyler, Shaham, Uri, Misra, Vedant, Demberg, Vera, Nyamai, Victoria, Raunak, Vikas, Ramasesh, Vinay, Prabhu, Vinay Uday, Padmakumar, Vishakh, Srikumar, Vivek, Fedus, William, Saunders, William, Zhang, William, Vossen, Wout, Ren, Xiang, Tong, Xiaoyu, Zhao, Xinran, Wu, Xinyi, Shen, Xudong, Yaghoobzadeh, Yadollah, Lakretz, Yair, Song, Yangqiu, Bahri, Yasaman, Choi, Yejin, Yang, Yichi, Hao, Yiding, Chen, Yifu, Belinkov, Yonatan, Hou, Yu, Hou, Yufang, Bai, Yuntao, Seid, Zachary, Zhao, Zhuoye, Wang, Zijian, Wang, Zijie J., Wang, Zirui, Wu, Ziyi
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.
Explanations Can Reduce Overreliance on AI Systems During Decision-Making
Vasconcelos, Helena, Jörke, Matthew, Grunde-McLaughlin, Madeleine, Gerstenberg, Tobias, Bernstein, Michael, Krishna, Ranjay
Prior work has identified a resilient phenomenon that threatens the performance of human-AI decision-making teams: overreliance, when people agree with an AI, even when it is incorrect. Surprisingly, overreliance does not reduce when the AI produces explanations for its predictions, compared to only providing predictions. Some have argued that overreliance results from cognitive biases or uncalibrated trust, attributing overreliance to an inevitability of human cognition. By contrast, our paper argues that people strategically choose whether or not to engage with an AI explanation, demonstrating empirically that there are scenarios where AI explanations reduce overreliance. To achieve this, we formalize this strategic choice in a cost-benefit framework, where the costs and benefits of engaging with the task are weighed against the costs and benefits of relying on the AI. We manipulate the costs and benefits in a maze task, where participants collaborate with a simulated AI to find the exit of a maze. Through 5 studies (N = 731), we find that costs such as task difficulty (Study 1), explanation difficulty (Study 2, 3), and benefits such as monetary compensation (Study 4) affect overreliance. Finally, Study 5 adapts the Cognitive Effort Discounting paradigm to quantify the utility of different explanations, providing further support for our framework. Our results suggest that some of the null effects found in literature could be due in part to the explanation not sufficiently reducing the costs of verifying the AI's prediction.