Goto

Collaborating Authors

 Gaur, Manas


From Guessing to Asking: An Approach to Resolving the Persona Knowledge Gap in LLMs during Multi-Turn Conversations

arXiv.org Artificial Intelligence

In multi-turn dialogues, large language models (LLM) face a critical challenge of ensuring coherence while adapting to user-specific information. This study introduces the persona knowledge gap, the discrepancy between a model's internal understanding and the knowledge required for coherent, personalized conversations. While prior research has recognized these gaps, computational methods for their identification and resolution remain underexplored. We propose Conversation Preference Elicitation and Recommendation (CPER), a novel framework that dynamically detects and resolves persona knowledge gaps using intrinsic uncertainty quantification and feedback-driven refinement. CPER consists of three key modules: a Contextual Understanding Module for preference extraction, a Dynamic Feedback Module for measuring uncertainty and refining persona alignment, and a Persona-Driven Response Generation module for adapting responses based on accumulated user context. We evaluate CPER on two real-world datasets: CCPE-M for preferential movie recommendations and ESConv for mental health support. Using A/B testing, human evaluators preferred CPER's responses 42% more often than baseline models in CCPE-M and 27% more often in ESConv. A qualitative human evaluation confirms that CPER's responses are preferred for maintaining contextual relevance and coherence, particularly in longer (12+ turn) conversations.


Can LLMs Obfuscate Code? A Systematic Analysis of Large Language Models into Assembly Code Obfuscation

arXiv.org Artificial Intelligence

Malware authors often employ code obfuscations to make their malware harder to detect. Existing tools for generating obfuscated code often require access to the original source code (e.g., C++ or Java), and adding new obfuscations is a non-trivial, labor-intensive process. In this study, we ask the following question: Can Large Language Models (LLMs) potentially generate a new obfuscated assembly code? If so, this poses a risk to anti-virus engines and potentially increases the flexibility of attackers to create new obfuscation patterns. We answer this in the affirmative by developing the MetamorphASM benchmark comprising MetamorphASM Dataset (MAD) along with three code obfuscation techniques: dead code, register substitution, and control flow change. The MetamorphASM systematically evaluates the ability of LLMs to generate and analyze obfuscated code using MAD, which contains 328,200 obfuscated assembly code samples. We release this dataset and analyze the success rate of various LLMs (e.g., GPT-3.5/4, GPT-4o-mini, Starcoder, CodeGemma, CodeLlama, CodeT5, and LLaMA 3.1) in generating obfuscated assembly code. The evaluation was performed using established information-theoretic metrics and manual human review to ensure correctness and provide the foundation for researchers to study and develop remediations to this risk. The source code can be found at the following GitHub link: https://github.com/mohammadi-ali/MetamorphASM.


Human-Readable Adversarial Prompts: An Investigation into LLM Vulnerabilities Using Situational Context

arXiv.org Artificial Intelligence

Previous research on LLM vulnerabilities often relied on nonsensical adversarial prompts, which were easily detectable by automated methods. We address this gap by focusing on human-readable adversarial prompts, a more realistic and potent threat. Our key contributions are situation-driven attacks leveraging movie scripts to create contextually relevant, human-readable prompts that successfully deceive LLMs, adversarial suffix conversion to transform nonsensical adversarial suffixes into meaningful text, and AdvPrompter with p-nucleus sampling, a method to generate diverse, human-readable adversarial suffixes, improving attack efficacy in models like GPT-3.5 and Gemma 7B. Our findings demonstrate that LLMs can be tricked by sophisticated adversaries into producing harmful responses with human-readable adversarial prompts and that there exists a scope for improvement when it comes to robust LLMs.


Towards Robust Evaluation of Unlearning in LLMs via Data Transformations

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown to be a great success in a wide range of applications ranging from regular NLP-based use cases to AI agents. LLMs have been trained on a vast corpus of texts from various sources; despite the best efforts during the data pre-processing stage while training the LLMs, they may pick some undesirable information such as personally identifiable information (PII). Consequently, in recent times research in the area of Machine Unlearning (MUL) has become active, the main idea is to force LLMs to forget (unlearn) certain information (e.g., PII) without suffering from performance loss on regular tasks. In this work, we examine the robustness of the existing MUL techniques for their ability to enable leakage-proof forgetting in LLMs. In particular, we examine the effect of data transformation on forgetting, i.e., is an unlearned LLM able to recall forgotten information if there is a change in the format of the input? Our findings on the TOFU dataset highlight the necessity of using diverse data formats to quantify unlearning in LLMs more reliably.


A Domain-Agnostic Neurosymbolic Approach for Big Social Data Analysis: Evaluating Mental Health Sentiment on Social Media during COVID-19

arXiv.org Artificial Intelligence

Monitoring public sentiment via social media is potentially helpful during health crises such as the COVID-19 pandemic. However, traditional frequency-based, data-driven neural network-based approaches can miss newly relevant content due to the evolving nature of language in a dynamically evolving environment. Human-curated symbolic knowledge sources, such as lexicons for standard language and slang terms, can potentially elevate social media signals in evolving language. We introduce a neurosymbolic method that integrates neural networks with symbolic knowledge sources, enhancing the detection and interpretation of mental health-related tweets relevant to COVID-19. Our method was evaluated using a corpus of large datasets (approximately 12 billion tweets, 2.5 million subreddit data, and 700k news articles) and multiple knowledge graphs. This method dynamically adapts to evolving language, outperforming purely data-driven models with an F1 score exceeding 92\%. This approach also showed faster adaptation to new data and lower computational demands than fine-tuning pre-trained large language models (LLMs). This study demonstrates the benefit of neurosymbolic methods in interpreting text in a dynamic environment for tasks such as health surveillance.


IoT-Based Preventive Mental Health Using Knowledge Graphs and Standards for Better Well-Being

arXiv.org Artificial Intelligence

Sustainable Development Goals (SDGs) give the UN a road map for development with Agenda 2030 as a target. SDG3 "Good Health and Well-Being" ensures healthy lives and promotes well-being for all ages. Digital technologies can support SDG3. Burnout and even depression could be reduced by encouraging better preventive health. Due to the lack of patient knowledge and focus to take care of their health, it is necessary to help patients before it is too late. New trends such as positive psychology and mindfulness are highly encouraged in the USA. Digital Twin (DT) can help with the continuous monitoring of emotion using physiological signals (e.g., collected via wearables). Digital twins facilitate monitoring and provide constant health insight to improve quality of life and well-being with better personalization. Healthcare DT challenges are standardizing data formats, communication protocols, and data exchange mechanisms. To achieve those data integration and knowledge challenges, we designed the Mental Health Knowledge Graph (ontology and dataset) to boost mental health. The Knowledge Graph (KG) acquires knowledge from ontology-based mental health projects classified within the LOV4IoT ontology catalog (Emotion, Depression, and Mental Health). Furthermore, the KG is mapped to standards (e.g., ontologies) when possible. Standards from ETSI SmartM2M, ITU/WHO, ISO, W3C, NIST, and IEEE are relevant to mental health.


WellDunn: On the Robustness and Explainability of Language Models and Large Language Models in Identifying Wellness Dimensions

arXiv.org Artificial Intelligence

Language Models (LMs) are being proposed for mental health applications where the heightened risk of adverse outcomes means predictive performance may not be a sufficient litmus test of a model's utility in clinical practice. A model that can be trusted for practice should have a correspondence between explanation and clinical determination, yet no prior research has examined the attention fidelity of these models and their effect on ground truth explanations. We introduce an evaluation design that focuses on the robustness and explainability of LMs in identifying Wellness Dimensions (WD). We focus on two mental health and well-being datasets: (a) Multi-label Classification-based MultiWD, and (b) WellXplain for evaluating attention mechanism veracity against expert-labeled explanations. The labels are based on Halbert Dunn's theory of wellness, which gives grounding to our evaluation. We reveal four surprising results about LMs/LLMs: (1) Despite their human-like capabilities, GPT-3.5/4 lag behind RoBERTa, and MedAlpaca, a fine-tuned LLM fails to deliver any remarkable improvements in performance or explanations. (2) Re-examining LMs' predictions based on a confidence-oriented loss function reveals a significant performance drop. (3) Across all LMs/LLMs, the alignment between attention and explanations remains low, with LLMs scoring a dismal 0.0. (4) Most mental health-specific LMs/LLMs overlook domain-specific knowledge and undervalue explanations, causing these discrepancies. This study highlights the need for further research into their consistency and explanations in mental health and well-being.


COBIAS: Contextual Reliability in Bias Assessment

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are trained on extensive web corpora, which enable them to understand and generate human-like text. However, this training process also results in inherent biases within the models. These biases arise from web data's diverse and often uncurated nature, containing various stereotypes and prejudices. Previous works on debiasing models rely on benchmark datasets to measure their method's performance. However, these datasets suffer from several pitfalls due to the highly subjective understanding of bias, highlighting a critical need for contextual exploration. We propose understanding the context of inputs by considering the diverse situations in which they may arise. Our contribution is two-fold: (i) we augment 2,291 stereotyped statements from two existing bias-benchmark datasets with points for adding context; (ii) we develop the Context-Oriented Bias Indicator and Assessment Score (COBIAS) to assess a statement's contextual reliability in measuring bias. Our metric aligns with human judgment on contextual reliability of statements (Spearman's $\rho = 0.65, p = 3.4 * 10^{-60}$) and can be used to create reliable datasets, which would assist bias mitigation works.


REASONS: A benchmark for REtrieval and Automated citationS Of scieNtific Sentences using Public and Proprietary LLMs

arXiv.org Artificial Intelligence

Automatic citation generation for sentences in a document or report is paramount for intelligence analysts, cybersecurity, news agencies, and education personnel. In this research, we investigate whether large language models (LLMs) are capable of generating references based on two forms of sentence queries: (a) Direct Queries, LLMs are asked to provide author names of the given research article, and (b) Indirect Queries, LLMs are asked to provide the title of a mentioned article when given a sentence from a different article. To demonstrate where LLM stands in this task, we introduce a large dataset called REASONS comprising abstracts of the 12 most popular domains of scientific research on arXiv. From around 20K research articles, we make the following deductions on public and proprietary LLMs: (a) State-of-the-art, often called anthropomorphic GPT-4 and GPT-3.5, suffers from high pass percentage (PP) to minimize the hallucination rate (HR). When tested with Perplexity.ai (7B), they unexpectedly made more errors; (b) Augmenting relevant metadata lowered the PP and gave the lowest HR; (c) Advance retrieval-augmented generation (RAG) using Mistral demonstrates consistent and robust citation support on indirect queries and matched performance to GPT-3.5 and GPT-4. The HR across all domains and models decreased by an average of 41.93%, and the PP was reduced to 0% in most cases. In terms of generation quality, the average F1 Score and BLEU were 68.09% and 57.51%, respectively; (d) Testing with adversarial samples showed that LLMs, including the Advance RAG Mistral, struggle to understand context, but the extent of this issue was small in Mistral and GPT-4-Preview. Our study contributes valuable insights into the reliability of RAG for automated citation generation tasks.


SaGE: Evaluating Moral Consistency in Large Language Models

arXiv.org Artificial Intelligence

Despite recent advancements showcasing the impressive capabilities of Large Language Models (LLMs) in conversational systems, we show that even state-of-the-art LLMs are morally inconsistent in their generations, questioning their reliability (and trustworthiness in general). Prior works in LLM evaluation focus on developing ground-truth data to measure accuracy on specific tasks. However, for moral scenarios that often lack universally agreed-upon answers, consistency in model responses becomes crucial for their reliability. To address this issue, we propose an information-theoretic measure called Semantic Graph Entropy (SaGE), grounded in the concept of "Rules of Thumb" (RoTs) to measure a model's moral consistency. RoTs are abstract principles learned by a model and can help explain their decision-making strategies effectively. To this extent, we construct the Moral Consistency Corpus (MCC), containing 50K moral questions, responses to them by LLMs, and the RoTs that these models followed. Furthermore, to illustrate the generalizability of SaGE, we use it to investigate LLM consistency on two popular datasets - TruthfulQA and HellaSwag. Our results reveal that task-accuracy and consistency are independent problems, and there is a dire need to investigate these issues further. Our Data and Code are publicly available at: https://github.com/vnnm404/SaGE