Goto

Collaborating Authors

 Gao, Yanjun


Leveraging Medical Knowledge Graphs Into Large Language Models for Diagnosis Prediction: Design and Application Study

arXiv.org Artificial Intelligence

Electronic Health Records (EHRs) and routine documentation practices play a vital role in patients' daily care, providing a holistic record of health, diagnoses, and treatment. However, complex and verbose EHR narratives overload healthcare providers, risking diagnostic inaccuracies. While Large Language Models (LLMs) have showcased their potential in diverse language tasks, their application in the healthcare arena needs to ensure the minimization of diagnostic errors and the prevention of patient harm. In this paper, we outline an innovative approach for augmenting the proficiency of LLMs in the realm of automated diagnosis generation, achieved through the incorporation of a medical knowledge graph (KG) and a novel graph model: Dr.Knows, inspired by the clinical diagnostic reasoning process. We derive the KG from the National Library of Medicine's Unified Medical Language System (UMLS), a robust repository of biomedical knowledge. Our method negates the need for pre-training and instead leverages the KG as an auxiliary instrument aiding in the interpretation and summarization of complex medical concepts. Using real-world hospital datasets, our experimental results demonstrate that the proposed approach of combining LLMs with KG has the potential to improve the accuracy of automated diagnosis generation. More importantly, our approach offers an explainable diagnostic pathway, edging us closer to the realization of AI-augmented diagnostic decision support systems.


"It Felt Like I Was Left in the Dark": Exploring Information Needs and Design Opportunities for Family Caregivers of Older Adult Patients in Critical Care Settings

arXiv.org Artificial Intelligence

Older adult patients constitute a rapidly growing subgroup of Intensive Care Unit (ICU) patients. In these situations, their family caregivers are expected to represent the unconscious patients to access and interpret patients' medical information. However, caregivers currently have to rely on overloaded clinicians for information updates and typically lack the health literacy to understand complex medical information. Our project aims to explore the information needs of caregivers of ICU older adult patients, from which we can propose design opportunities to guide future AI systems. The project begins with formative interviews with 11 caregivers to identify their challenges in accessing and interpreting medical information; From these findings, we then synthesize design requirements and propose an AI system prototype to cope with caregivers' challenges. The system prototype has two key features: a timeline visualization to show the AI extracted and summarized older adult patients' key medical events; and an LLM-based chatbot to provide context-aware informational support. We conclude our paper by reporting on the follow-up user evaluation of the system and discussing future AI-based systems for ICU caregivers of older adults.


Zero-shot Large Language Models for Long Clinical Text Summarization with Temporal Reasoning

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have shown potential for transforming data processing in healthcare, particularly in understanding complex clinical narratives. This study evaluates the efficacy of zero-shot LLMs in summarizing long clinical texts that require temporal reasoning, a critical aspect for comprehensively capturing patient histories and treatment trajectories. We applied a series of advanced zero-shot LLMs to extensive clinical documents, assessing their ability to integrate and accurately reflect temporal dynamics without prior task-specific training. While the models efficiently identified key temporal events, they struggled with chronological coherence over prolonged narratives. The evaluation, combining quantitative and qualitative methods, highlights the strengths and limitations of zero-shot LLMs in clinical text summarization. The results suggest that while promising, zero-shot LLMs require further refinement to effectively support clinical decision-making processes, underscoring the need for enhanced model training approaches that better capture the nuances of temporal information in long context medical documents.


Development and Validation of the Provider Documentation Summarization Quality Instrument for Large Language Models

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) are integrated into electronic health record (EHR) workflows, validated instruments are essential to evaluate their performance before implementation. Existing instruments for provider documentation quality are often unsuitable for the complexities of LLM-generated text and lack validation on real-world data. The Provider Documentation Summarization Quality Instrument (PDSQI-9) was developed to evaluate LLM-generated clinical summaries. Multi-document summaries were generated from real-world EHR data across multiple specialties using several LLMs (GPT-4o, Mixtral 8x7b, and Llama 3-8b). Validation included Pearson correlation for substantive validity, factor analysis and Cronbach's alpha for structural validity, inter-rater reliability (ICC and Krippendorff's alpha) for generalizability, a semi-Delphi process for content validity, and comparisons of high- versus low-quality summaries for discriminant validity. Seven physician raters evaluated 779 summaries and answered 8,329 questions, achieving over 80% power for inter-rater reliability. The PDSQI-9 demonstrated strong internal consistency (Cronbach's alpha = 0.879; 95% CI: 0.867-0.891) and high inter-rater reliability (ICC = 0.867; 95% CI: 0.867-0.868), supporting structural validity and generalizability. Factor analysis identified a 4-factor model explaining 58% of the variance, representing organization, clarity, accuracy, and utility. Substantive validity was supported by correlations between note length and scores for Succinct (rho = -0.200, p = 0.029) and Organized (rho = -0.190, p = 0.037). Discriminant validity distinguished high- from low-quality summaries (p < 0.001). The PDSQI-9 demonstrates robust construct validity, supporting its use in clinical practice to evaluate LLM-generated summaries and facilitate safer integration of LLMs into healthcare workflows.


Position Paper On Diagnostic Uncertainty Estimation from Large Language Models: Next-Word Probability Is Not Pre-test Probability

arXiv.org Artificial Intelligence

Large language models (LLMs) are being explored for diagnostic decision support, yet their ability to estimate pre-test probabilities, vital for clinical decision-making, remains limited. This study evaluates two LLMs, Mistral-7B and Llama3-70B, using structured electronic health record data on three diagnosis tasks. We examined three current methods of extracting LLM probability estimations and revealed their limitations. We aim to highlight the need for improved techniques in LLM confidence estimation.


Evaluation of Large Language Models for Summarization Tasks in the Medical Domain: A Narrative Review

arXiv.org Artificial Intelligence

Large Language Models have advanced clinical Natural Language Generation, creating opportunities to manage the volume of medical text. However, the high-stakes nature of medicine requires reliable evaluation, which remains a challenge. In this narrative review, we assess the current evaluation state for clinical summarization tasks and propose future directions to address the resource constraints of expert human evaluation.


Lessons Learned on Information Retrieval in Electronic Health Records: A Comparison of Embedding Models and Pooling Strategies

arXiv.org Artificial Intelligence

Objective: Applying large language models (LLMs) to the clinical domain is challenging due to the context-heavy nature of processing medical records. Retrieval-augmented generation (RAG) offers a solution by facilitating reasoning over large text sources. However, there are many parameters to optimize in just the retrieval system alone. This paper presents an ablation study exploring how different embedding models and pooling methods affect information retrieval for the clinical domain. Methods: Evaluating on three retrieval tasks on two electronic health record (EHR) data sources, we compared seven models, including medical- and general-domain models, specialized encoder embedding models, and off-the-shelf decoder LLMs. We also examine the choice of embedding pooling strategy for each model, independently on the query and the text to retrieve. Results: We found that the choice of embedding model significantly impacts retrieval performance, with BGE, a comparatively small general-domain model, consistently outperforming all others, including medical-specific models. However, our findings also revealed substantial variability across datasets and query text phrasings. We also determined the best pooling methods for each of these models to guide future design of retrieval systems. Discussion: The choice of embedding model, pooling strategy, and query formulation can significantly impact retrieval performance and the performance of these models on other public benchmarks does not necessarily transfer to new domains. Further studies such as this one are vital for guiding empirically-grounded development of retrieval frameworks, such as in the context of RAG, for the clinical domain.


Learning to Maximize Mutual Information for Chain-of-Thought Distillation

arXiv.org Artificial Intelligence

Knowledge distillation, the technique of transferring knowledge from large, complex models to smaller ones, marks a pivotal step towards efficient AI deployment. Distilling Step-by-Step~(DSS), a novel method utilizing chain-of-thought~(CoT) distillation, has demonstrated promise by imbuing smaller models with the superior reasoning capabilities of their larger counterparts. In DSS, the distilled model acquires the ability to generate rationales and predict labels concurrently through a multi-task learning framework. However, DSS overlooks the intrinsic relationship between the two training tasks, leading to ineffective integration of CoT knowledge with the task of label prediction. To this end, we investigate the mutual relationship of the two tasks from Information Bottleneck perspective and formulate it as maximizing the mutual information of the representation features of the two tasks. We propose a variational approach to solve this optimization problem using a learning-based method. Our experimental results across four datasets demonstrate that our method outperforms the state-of-the-art DSS. Our findings offer insightful guidance for future research on language model distillation as well as applications involving CoT. Codes are available at \url{https://github.com/xinchen9/cot_distillation_ACL2024}.


Anchored Answers: Unravelling Positional Bias in GPT-2's Multiple-Choice Questions

arXiv.org Artificial Intelligence

Large Language Models (LLMs), such as the GPT-4 and LLaMA families, have demonstrated considerable success across diverse tasks, including multiple-choice questions (MCQs). However, these models exhibit a positional bias, particularly an even worse "anchored bias" in the GPT-2 family, where they consistently favour the first choice'A' in MCQs during inference. This anchored bias challenges the integrity of GPT-2's decision-making process, as it skews performance based on the position rather than the content of the choices in MCQs. In this study, we utilise the mechanistic interpretability approach to identify the internal modules within GPT-2 models responsible for this bias. We focus on the Multi-Layer Perceptron (MLP) layers and attention heads, using the "logit lens" method to trace and modify the specific value vectors that contribute to the bias. By updating these vectors within MLP and recalibrating attention patterns to neutralise the preference for the first choice'A', we effectively mitigate the anchored bias. Our interventions not only mitigate the bias but also improve the overall MCQ prediction accuracy for the GPT-2 family across various datasets. This work represents the first comprehensive mechanistic analysis of anchored bias in MCQs within the GPT-2 models, introducing targeted, minimal-intervention strategies that significantly enhance GPT2 model robustness and accuracy in MCQs.


Improving Clinical NLP Performance through Language Model-Generated Synthetic Clinical Data

arXiv.org Artificial Intelligence

A common challenge for the development of clinical natural language processing (NLP) methods is the availability of large annotated datasets for model training, fine-tuning, and evaluation. Traditional annotation processes are time-consuming, expensive, and often require expert medical knowledge, creating significant research and benchmark development constraints.