Gan, Woon-Seng
Unsupervised learning based end-to-end delayless generative fixed-filter active noise control
Luo, Zhengding, Shi, Dongyuan, Shen, Xiaoyi, Gan, Woon-Seng
Delayless noise control is achieved by our earlier generative fixed-filter active noise control (GFANC) framework through efficient coordination between the co-processor and real-time controller. However, the one-dimensional convolutional neural network (1D CNN) in the co-processor requires initial training using labelled noise datasets. Labelling noise data can be resource-intensive and may introduce some biases. In this paper, we propose an unsupervised-GFANC approach to simplify the 1D CNN training process and enhance its practicality. During training, the co-processor and real-time controller are integrated into an end-to-end differentiable ANC system. This enables us to use the accumulated squared error signal as the loss for training the 1D CNN. With this unsupervised learning paradigm, the unsupervised-GFANC method not only omits the labelling process but also exhibits better noise reduction performance compared to the supervised GFANC method in real noise experiments.
Description on IEEE ICME 2024 Grand Challenge: Semi-supervised Acoustic Scene Classification under Domain Shift
Bai, Jisheng, Wang, Mou, Liu, Haohe, Yin, Han, Jia, Yafei, Huang, Siwei, Du, Yutong, Zhang, Dongzhe, Plumbley, Mark D., Shi, Dongyuan, Gan, Woon-Seng, Rahardja, Susanto, Xiang, Bin, Chen, Jianfeng
Acoustic scene classification (ASC) is a crucial research problem in computational auditory scene analysis, and it aims to recognize the unique acoustic characteristics of an environment. One of the challenges of the ASC task is domain shift caused by a distribution gap between training and testing data. Since 2018, ASC challenges have focused on the generalization of ASC models across different recording devices. Although this task in recent years has achieved substantial progress in device generalization, the challenge of domain shift between different regions, involving characteristics such as time, space, culture, and language, remains insufficiently explored at present. In addition, considering the abundance of unlabeled acoustic scene data in the real world, it is important to study the possible ways to utilize these unlabelled data. Therefore, we introduce the task Semi-supervised Acoustic Scene Classification under Domain Shift in the ICME 2024 Grand Challenge. We encourage participants to innovate with semi-supervised learning techniques, aiming to develop more robust ASC models under domain shift.
An Empirical Bayes Framework for Open-Domain Dialogue Generation
Lee, Jing Yang, Lee, Kong Aik, Gan, Woon-Seng
To engage human users in meaningful conversation, open-domain dialogue agents are required to generate diverse and contextually coherent dialogue. Despite recent advancements, which can be attributed to the usage of pretrained language models, the generation of diverse and coherent dialogue remains an open research problem. A popular approach to address this issue involves the adaptation of variational frameworks. However, while these approaches successfully improve diversity, they tend to compromise on contextual coherence. Hence, we propose the Bayesian Open-domain Dialogue with Empirical Bayes (BODEB) framework, an empirical bayes framework for constructing an Bayesian open-domain dialogue agent by leveraging pretrained parameters to inform the prior and posterior parameter distributions. Empirical results show that BODEB achieves better results in terms of both diversity and coherence compared to variational frameworks.
Partially Randomizing Transformer Weights for Dialogue Response Diversity
Lee, Jing Yang, Lee, Kong Aik, Gan, Woon-Seng
Despite recent progress in generative open-domain dialogue, the issue of low response diversity persists. Prior works have addressed this issue via either novel objective functions, alternative learning approaches such as variational frameworks, or architectural extensions such as the Randomized Link (RL) Transformer. However, these approaches typically entail either additional difficulties during training/inference, or a significant increase in model size and complexity. Hence, we propose the \underline{Pa}rtially \underline{Ra}ndomized trans\underline{Former} (PaRaFormer), a simple extension of the transformer which involves freezing the weights of selected layers after random initialization. Experimental results reveal that the performance of the PaRaformer is comparable to that of the aforementioned approaches, despite not entailing any additional training difficulty or increase in model complexity.
Deep Generative Fixed-filter Active Noise Control
Luo, Zhengding, Shi, Dongyuan, Shen, Xiaoyi, Ji, Junwei, Gan, Woon-Seng
Due to the slow convergence and poor tracking ability, conventional LMS-based adaptive algorithms are less capable of handling dynamic noises. Selective fixed-filter active noise control (SFANC) can significantly reduce response time by selecting appropriate pre-trained control filters for different noises. Nonetheless, the limited number of pre-trained control filters may affect noise reduction performance, especially when the incoming noise differs much from the initial noises during pre-training. Therefore, a generative fixed-filter active noise control (GFANC) method is proposed in this paper to overcome the limitation. Based on deep learning and a perfect-reconstruction filter bank, the GFANC method only requires a few prior data (one pre-trained broadband control filter) to automatically generate suitable control filters for various noises. The efficacy of the GFANC method is demonstrated by numerical simulations on real-recorded noises.
A Hybrid SFANC-FxNLMS Algorithm for Active Noise Control based on Deep Learning
Luo, Zhengding, Shi, Dongyuan, Gan, Woon-Seng
The selective fixed-filter active noise control (SFANC) method selecting the best pre-trained control filters for various types of noise can achieve a fast response time. However, it may lead to large steady-state errors due to inaccurate filter selection and the lack of adaptability. In comparison, the filtered-X normalized least-mean-square (FxNLMS) algorithm can obtain lower steady-state errors through adaptive optimization. Nonetheless, its slow convergence has a detrimental effect on dynamic noise attenuation. Therefore, this paper proposes a hybrid SFANC-FxNLMS approach to overcome the adaptive algorithm's slow convergence and provide a better noise reduction level than the SFANC method. A lightweight one-dimensional convolutional neural network (1D CNN) is designed to automatically select the most suitable pre-trained control filter for each frame of the primary noise. Meanwhile, the FxNLMS algorithm continues to update the coefficients of the chosen pre-trained control filter at the sampling rate. Owing to the effective combination of the two algorithms, experimental results show that the hybrid SFANC-FxNLMS algorithm can achieve a rapid response time, a low noise reduction error, and a high degree of robustness.
Autonomous In-Situ Soundscape Augmentation via Joint Selection of Masker and Gain
Watcharasupat, Karn N., Ooi, Kenneth, Lam, Bhan, Wong, Trevor, Ong, Zhen-Ting, Gan, Woon-Seng
The selection of maskers and playback gain levels in a soundscape augmentation system is crucial to its effectiveness in improving the overall acoustic comfort of a given environment. Traditionally, the selection of appropriate maskers and gain levels has been informed by expert opinion, which may not representative of the target population, or by listening tests, which can be time-consuming and labour-intensive. Furthermore, the resulting static choices of masker and gain are often inflexible to the dynamic nature of real-world soundscapes. In this work, we utilized a deep learning model to perform joint selection of the optimal masker and its gain level for a given soundscape. The proposed model was designed with highly modular building blocks, allowing for an optimized inference process that can quickly search through a large number of masker and gain combinations. In addition, we introduced the use of feature-domain soundscape augmentation conditioned on the digital gain level, eliminating the computationally expensive waveform-domain mixing process during inference time, as well as the tedious pre-calibration process required for new maskers. The proposed system was validated on a large-scale dataset of subjective responses to augmented soundscapes with more than 440 participants, ensuring the ability of the model to predict combined effect of the masker and its gain level on the perceptual pleasantness level.
End-to-End Complex-Valued Multidilated Convolutional Neural Network for Joint Acoustic Echo Cancellation and Noise Suppression
Watcharasupat, Karn N., Nguyen, Thi Ngoc Tho, Gan, Woon-Seng, Zhao, Shengkui, Ma, Bin
Echo and noise suppression is an integral part of a full-duplex communication system. Many recent acoustic echo cancellation (AEC) systems rely on a separate adaptive filtering module for linear echo suppression and a neural module for residual echo suppression. However, not only do adaptive filtering modules require convergence and remain susceptible to changes in acoustic environments, but this two-stage framework also often introduces unnecessary delays to the AEC system when neural modules are already capable of both linear and nonlinear echo suppression. In this paper, we exploit the offset-compensating ability of complex time-frequency masks and propose an end-to-end complex-valued neural network architecture. The building block of the proposed model is a pseudocomplex extension based on the densely-connected multidilated DenseNet (D3Net) building block, resulting in a very small network of only 354K parameters. The architecture utilized the multi-resolution nature of the D3Net building blocks to eliminate the need for pooling, allowing the network to extract features using large receptive fields without any loss of output resolution. We also propose a dual-mask technique for joint echo and noise suppression with simultaneous speech enhancement. Evaluation on both synthetic and real test sets demonstrated promising results across multiple energy-based metrics and perceptual proxies.