Goto

Collaborating Authors

 Gambetta, Daniele


A linguistic analysis of undesirable outcomes in the era of generative AI

arXiv.org Artificial Intelligence

Recent research has focused on the medium and long-term impacts of generative AI, posing scientific and societal challenges mainly due to the detection and reliability of machine-generated information, which is projected to form the major content on the Web soon. Prior studies show that LLMs exhibit a lower performance in generation tasks (model collapse) as they undergo a fine-tuning process across multiple generations on their own generated content (self-consuming loop). In this paper, we present a comprehensive simulation framework built upon the chat version of LLama2, focusing particularly on the linguistic aspects of the generated content, which has not been fully examined in existing studies. Our results show that the model produces less lexical rich content across generations, reducing diversity. The lexical richness has been measured using the linguistic measures of entropy and TTR as well as calculating the POSTags frequency. The generated content has also been examined with an $n$-gram analysis, which takes into account the word order, and semantic networks, which consider the relation between different words. These findings suggest that the model collapse occurs not only by decreasing the content diversity but also by distorting the underlying linguistic patterns of the generated text, which both highlight the critical importance of carefully choosing and curating the initial input text, which can alleviate the model collapse problem. Furthermore, we conduct a qualitative analysis of the fine-tuned models of the pipeline to compare their performances on generic NLP tasks to the original model. We find that autophagy transforms the initial model into a more creative, doubtful and confused one, which might provide inaccurate answers and include conspiracy theories in the model responses, spreading false and biased information on the Web.


A survey on the impact of AI-based recommenders on human behaviours: methodologies, outcomes and future directions

arXiv.org Artificial Intelligence

Recommendation systems and assistants (from now on, recommenders) - algorithms suggesting items or providing solutions based on users' preferences or requests [99, 105, 141, 166] - influence through online platforms most actions of our day to day life. For example, recommendations on social media suggest new social connections, those on online retail platforms guide users' product choices, navigation services offer routes to desired destinations, and generative AI platforms produce content based on users' requests. Unlike other AI tools, such as medical diagnostic support systems, robotic vision systems, or autonomous driving, which assist in specific tasks or functions, recommenders are ubiquitous in online platforms, shaping our decisions and interactions instantly and profoundly. The influence recommenders exert on users' behaviour may generate long-lasting and often unintended effects on human-AI ecosystems [131], such as amplifying political radicalisation processes [82], increasing CO2 emissions in the environment [36] and amplifying inequality, biases and discriminations [120]. The interaction between humans and recommenders has been examined in various fields using different nomenclatures, research methods and datasets, often producing incongruent findings.