Funkhouser, Thomas
Gaussian3Diff: 3D Gaussian Diffusion for 3D Full Head Synthesis and Editing
Lan, Yushi, Tan, Feitong, Qiu, Di, Xu, Qiangeng, Genova, Kyle, Huang, Zeng, Fanello, Sean, Pandey, Rohit, Funkhouser, Thomas, Loy, Chen Change, Zhang, Yinda
We present a novel framework for generating photorealistic Editing capabilities for 3D-aware GANs have also been 3D human head and subsequently manipulating achieved through latent space auto-decoding, altering a 2D and reposing them with remarkable flexibility. The proposed semantic segmentation [62, 63], or modifying the underlying approach leverages an implicit function representation geometry scaffold [64]. However, generation and editing of 3D human heads, employing 3D Gaussians anchored quality tends to be unstable and less diversified due to on a parametric face model. To enhance representational the inherent limitation of GANs, and detailed-level editing capabilities and encode spatial information, we is not well supported due to feature entanglement in the embed a lightweight tri-plane payload within each Gaussian compact latent space or tri-plane representations.
FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations
Diller, Christian, Funkhouser, Thomas, Dai, Angela
We present a generative approach to forecast long-term future human behavior in 3D, requiring only weak supervision from readily available 2D human action data. This is a fundamental task enabling many downstream applications. The required ground-truth data is hard to capture in 3D (mocap suits, expensive setups) but easy to acquire in 2D (simple RGB cameras). Thus, we design our method to only require 2D RGB data while being able to generate 3D human motion sequences. We use a differentiable 2D projection scheme in an autoregressive manner for weak supervision, and an adversarial loss for 3D regularization. Our method predicts long and complex behavior sequences (e.g. cooking, assembly) consisting of multiple sub-actions. We tackle this in a semantically hierarchical manner, jointly predicting high-level coarse action labels together with their low-level fine-grained realizations as characteristic 3D human poses. We observe that these two action representations are coupled in nature, and joint prediction benefits both action and pose forecasting. Our experiments demonstrate the complementary nature of joint action and 3D pose prediction: our joint approach outperforms each task treated individually, enables robust longer-term sequence prediction, and outperforms alternative approaches to forecast actions and characteristic 3D poses.
TidyBot: Personalized Robot Assistance with Large Language Models
Wu, Jimmy, Antonova, Rika, Kan, Adam, Lepert, Marion, Zeng, Andy, Song, Shuran, Bohg, Jeannette, Rusinkiewicz, Szymon, Funkhouser, Thomas
For a robot to personalize physical assistance effectively, it must learn user preferences that can be generally reapplied to future scenarios. In this work, we investigate personalization of household cleanup with robots that can tidy up rooms by picking up objects and putting them away. A key challenge is determining the proper place to put each object, as people's preferences can vary greatly depending on personal taste or cultural background. For instance, one person may prefer storing shirts in the drawer, while another may prefer them on the shelf. We aim to build systems that can learn such preferences from just a handful of examples via prior interactions with a particular person. We show that robots can combine language-based planning and perception with the few-shot summarization capabilities of large language models (LLMs) to infer generalized user preferences that are broadly applicable to future interactions. This approach enables fast adaptation and achieves 91.2% accuracy on unseen objects in our benchmark dataset. We also demonstrate our approach on a real-world mobile manipulator called TidyBot, which successfully puts away 85.0% of objects in real-world test scenarios.
MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures
Chen, Zhiqin, Funkhouser, Thomas, Hedman, Peter, Tagliasacchi, Andrea
Neural Radiance Fields (NeRFs) have demonstrated amazing ability to synthesize images of 3D scenes from novel views. However, they rely upon specialized volumetric rendering algorithms based on ray marching that are mismatched to the capabilities of widely deployed graphics hardware. This paper introduces a new NeRF representation based on textured polygons that can synthesize novel images efficiently with standard rendering pipelines. The NeRF is represented as a set of polygons with textures representing binary opacities and feature vectors. Traditional rendering of the polygons with a z-buffer yields an image with features at every pixel, which are interpreted by a small, view-dependent MLP running in a fragment shader to produce a final pixel color. This approach enables NeRFs to be rendered with the traditional polygon rasterization pipeline, which provides massive pixel-level parallelism, achieving interactive frame rates on a wide range of compute platforms, including mobile phones.
Polynomial Neural Fields for Subband Decomposition and Manipulation
Yang, Guandao, Benaim, Sagie, Jampani, Varun, Genova, Kyle, Barron, Jonathan T., Funkhouser, Thomas, Hariharan, Bharath, Belongie, Serge
Neural fields have emerged as a new paradigm for representing signals, thanks to their ability to do it compactly while being easy to optimize. In most applications, however, neural fields are treated like black boxes, which precludes many signal manipulation tasks. In this paper, we propose a new class of neural fields called polynomial neural fields (PNFs). The key advantage of a PNF is that it can represent a signal as a composition of a number of manipulable and interpretable components without losing the merits of neural fields representation. We develop a general theoretical framework to analyze and design PNFs. We use this framework to design Fourier PNFs, which match state-of-the-art performance in signal representation tasks that use neural fields. In addition, we empirically demonstrate that Fourier PNFs enable signal manipulation applications such as texture transfer and scale-space interpolation. Code is available at https://github.com/stevenygd/PNF.
Scene Representation Transformer: Geometry-Free Novel View Synthesis Through Set-Latent Scene Representations
Sajjadi, Mehdi S. M., Meyer, Henning, Pot, Etienne, Bergmann, Urs, Greff, Klaus, Radwan, Noha, Vora, Suhani, Lucic, Mario, Duckworth, Daniel, Dosovitskiy, Alexey, Uszkoreit, Jakob, Funkhouser, Thomas, Tagliasacchi, Andrea
A classical problem in computer vision is to infer a 3D scene representation from few images that can be used to render novel views at interactive rates. Previous work focuses on reconstructing pre-defined 3D representations, e.g. textured meshes, or implicit representations, e.g. radiance fields, and often requires input images with precise camera poses and long processing times for each novel scene. In this work, we propose the Scene Representation Transformer (SRT), a method which processes posed or unposed RGB images of a new area, infers a "set-latent scene representation", and synthesises novel views, all in a single feed-forward pass. To calculate the scene representation, we propose a generalization of the Vision Transformer to sets of images, enabling global information integration, and hence 3D reasoning. An efficient decoder transformer parameterizes the light field by attending into the scene representation to render novel views. Learning is supervised end-to-end by minimizing a novel-view reconstruction error. We show that this method outperforms recent baselines in terms of PSNR and speed on synthetic datasets, including a new dataset created for the paper. Further, we demonstrate that SRT scales to support interactive visualization and semantic segmentation of real-world outdoor environments using Street View imagery.
Spatial Intention Maps for Multi-Agent Mobile Manipulation
Wu, Jimmy, Sun, Xingyuan, Zeng, Andy, Song, Shuran, Rusinkiewicz, Szymon, Funkhouser, Thomas
The ability to communicate intention enables decentralized multi-agent robots to collaborate while performing physical tasks. In this work, we present spatial intention maps, a new intention representation for multi-agent vision-based deep reinforcement learning that improves coordination between decentralized mobile manipulators. In this representation, each agent's intention is provided to other agents, and rendered into an overhead 2D map aligned with visual observations. This synergizes with the recently proposed spatial action maps framework, in which state and action representations are spatially aligned, providing inductive biases that encourage emergent cooperative behaviors requiring spatial coordination, such as passing objects to each other or avoiding collisions. Experiments across a variety of multi-agent environments, including heterogeneous robot teams with different abilities (lifting, pushing, or throwing), show that incorporating spatial intention maps improves performance for different mobile manipulation tasks while significantly enhancing cooperative behaviors.
Spatial Action Maps for Mobile Manipulation
Wu, Jimmy, Sun, Xingyuan, Zeng, Andy, Song, Shuran, Lee, Johnny, Rusinkiewicz, Szymon, Funkhouser, Thomas
Typical end-to-end formulations for learning robotic navigation involve predicting a small set of steering command actions (e.g., step forward, turn left, turn right, etc.) from images of the current state (e.g., a bird's-eye view of a SLAM reconstruction). Instead, we show that it can be advantageous to learn with dense action representations defined in the same domain as the state. In this work, we present "spatial action maps," in which the set of possible actions is represented by a pixel map (aligned with the input image of the current state), where each pixel represents a local navigational endpoint at the corresponding scene location. Using ConvNets to infer spatial action maps from state images, action predictions are thereby spatially anchored on local visual features in the scene, enabling significantly faster learning of complex behaviors for mobile manipulation tasks with reinforcement learning. In our experiments, we task a robot with pushing objects to a goal location, and find that policies learned with spatial action maps achieve much better performance than traditional alternatives.
TossingBot: Learning to Throw Arbitrary Objects with Residual Physics
Zeng, Andy, Song, Shuran, Lee, Johnny, Rodriguez, Alberto, Funkhouser, Thomas
We investigate whether a robot arm can learn to pick and throw arbitrary objects into selected boxes quickly and accurately. Throwing has the potential to increase the physical reachability and picking speed of a robot arm. However, precisely throwing arbitrary objects in unstructured settings presents many challenges: from acquiring reliable pre-throw conditions (e.g. initial pose of object in manipulator) to handling varying object-centric properties (e.g. mass distribution, friction, shape) and dynamics (e.g. aerodynamics). In this work, we propose an end-to-end formulation that jointly learns to infer control parameters for grasping and throwing motion primitives from visual observations (images of arbitrary objects in a bin) through trial and error. Within this formulation, we investigate the synergies between grasping and throwing (i.e., learning grasps that enable more accurate throws) and between simulation and deep learning (i.e., using deep networks to predict residuals on top of control parameters predicted by a physics simulator). The resulting system, TossingBot, is able to grasp and throw arbitrary objects into boxes located outside its maximum reach range at 500+ mean picks per hour (600+ grasps per hour with 85% throwing accuracy); and generalizes to new objects and target locations. Videos are available at https://tossingbot.cs.princeton.edu
Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning
Zeng, Andy, Song, Shuran, Welker, Stefan, Lee, Johnny, Rodriguez, Alberto, Funkhouser, Thomas
Skilled robotic manipulation benefits from complex synergies between non-prehensile (e.g. pushing) and prehensile (e.g. grasping) actions: pushing can help rearrange cluttered objects to make space for arms and fingers; likewise, grasping can help displace objects to make pushing movements more precise and collision-free. In this work, we demonstrate that it is possible to discover and learn these synergies from scratch through model-free deep reinforcement learning. Our method involves training two fully convolutional networks that map from visual observations to actions: one infers the utility of pushes for a dense pixel-wise sampling of end effector orientations and locations, while the other does the same for grasping. Both networks are trained jointly in a Q-learning framework and are entirely self-supervised by trial and error, where rewards are provided from successful grasps. In this way, our policy learns pushing motions that enable future grasps, while learning grasps that can leverage past pushes. During picking experiments in both simulation and real-world scenarios, we find that our system quickly learns complex behaviors amid challenging cases of clutter, and achieves better grasping success rates and picking efficiencies than baseline alternatives after only a few hours of training. We further demonstrate that our method is capable of generalizing to novel objects. Qualitative results (videos), code, pre-trained models, and simulation environments are available at http://vpg.cs.princeton.edu