Goto

Collaborating Authors

 Fu, Tianyu


FrameFusion: Combining Similarity and Importance for Video Token Reduction on Large Visual Language Models

arXiv.org Artificial Intelligence

The increasing demand to process long and high-resolution videos significantly burdens Large Vision-Language Models (LVLMs) due to the enormous number of visual tokens. Existing token reduction methods primarily focus on importance-based token pruning, which overlooks the redundancy caused by frame resemblance and repetitive visual elements. In this paper, we analyze the high vision token similarities in LVLMs. We reveal that token similarity distribution condenses as layers deepen while maintaining ranking consistency. Leveraging the unique properties of similarity over importance, we introduce FrameFusion, a novel approach that combines similarity-based merging with importance-based pruning for better token reduction in LVLMs. FrameFusion identifies and merges similar tokens before pruning, opening up a new perspective for token reduction. We evaluate FrameFusion on diverse LVLMs, including Llava-Video-{7B,32B,72B}, and MiniCPM-V-8B, on video understanding, question-answering, and retrieval benchmarks. Experiments show that FrameFusion reduces vision tokens by 70$\%$, achieving 3.4-4.4x LLM speedups and 1.6-1.9x end-to-end speedups, with an average performance impact of less than 3$\%$. Our code is available at https://github.com/thu-nics/FrameFusion.


MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression

arXiv.org Artificial Intelligence

Sparse attention can effectively mitigate the significant memory and throughput demands of Large Language Models (LLMs) in long contexts. Existing methods typically employ a uniform sparse attention mask, applying the same sparse pattern across different attention heads and input lengths. However, this uniform approach fails to capture the diverse attention patterns inherent in LLMs, ignoring their distinct accuracy-latency trade-offs. To address this challenge, we propose the Mixture of Attention (MoA), which automatically tailors distinct sparse attention configurations to different heads and layers. MoA constructs and navigates a search space of various attention patterns and their scaling rules relative to input sequence lengths. It profiles the model, evaluates potential configurations, and pinpoints the optimal sparse attention compression plan. MoA adapts to varying input sizes, revealing that some attention heads expand their focus to accommodate longer sequences, while other heads consistently concentrate on fixed-length local contexts. Experiments show that MoA increases the effective context length by $3.9\times$ with the same average attention span, boosting retrieval accuracy by $1.5-7.1\times$ over the uniform-attention baseline across Vicuna-7B, Vicuna-13B, and Llama3-8B models. Moreover, MoA narrows the capability gaps between sparse and dense models, reducing the maximum relative performance drop from $9\%-36\%$ to within $5\%$ across two long-context understanding benchmarks. MoA achieves a $1.2-1.4\times$ GPU memory reduction and boosts decode throughput by $5.5-6.7 \times$ for 7B and 13B dense models on a single GPU, with minimal impact on performance.


Can LLMs Learn by Teaching? A Preliminary Study

arXiv.org Artificial Intelligence

Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, for humans, teaching not only improves students but also improves teachers. We ask: Can LLMs also learn by teaching (LbT)? If yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration of this ambitious agenda. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and provide noticeable improvements. Specifically, we design three methods, each mimicking one of the three levels of LbT in humans: observing students' feedback, learning from the feedback, and learning iteratively, with the goals of improving answer accuracy without training and improving models' inherent capability with fine-tuning. The findings are encouraging. For example, similar to LbT in human, we see that: (1) LbT can induce weak-to-strong generalization: strong models can improve themselves by teaching other weak models; (2) Diversity in students might help: teaching multiple students could be better than teaching one student or the teacher itself. We hope that this early promise can inspire future research on LbT and more broadly adopting the advanced techniques in education to improve LLMs. The code is available at https://github.com/imagination-research/lbt.


A Survey on Efficient Inference for Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have attracted extensive attention due to their remarkable performance across various tasks. However, the substantial computational and memory requirements of LLM inference pose challenges for deployment in resource-constrained scenarios. Efforts within the field have been directed towards developing techniques aimed at enhancing the efficiency of LLM inference. This paper presents a comprehensive survey of the existing literature on efficient LLM inference. We start by analyzing the primary causes of the inefficient LLM inference, i.e., the large model size, the quadratic-complexity attention operation, and the auto-regressive decoding approach. Then, we introduce a comprehensive taxonomy that organizes the current literature into data-level, model-level, and system-level optimization. Moreover, the paper includes comparative experiments on representative methods within critical sub-fields to provide quantitative insights. Last but not least, we provide some knowledge summary and discuss future research directions.


Representation Learning for Frequent Subgraph Mining

arXiv.org Artificial Intelligence

Identifying frequent subgraphs, also called network motifs, is crucial in analyzing and predicting properties of real-world networks. However, finding large commonly-occurring motifs remains a challenging problem not only due to its NP-hard subroutine of subgraph counting, but also the exponential growth of the number of possible subgraphs patterns. Here we present Subgraph Pattern Miner (SPMiner), a novel neural approach for approximately finding frequent subgraphs in a large target graph. SPMiner combines graph neural networks, order embedding space, and an efficient search strategy to identify network subgraph patterns that appear most frequently in the target graph. SPMiner first decomposes the target graph into many overlapping subgraphs and then encodes each subgraph into an order embedding space. SPMiner then uses a monotonic walk in the order embedding space to identify frequent motifs. Compared to existing approaches and possible neural alternatives, SPMiner is more accurate, faster, and more scalable. For 5- and 6-node motifs, we show that SPMiner can almost perfectly identify the most frequent motifs while being 100x faster than exact enumeration methods. In addition, SPMiner can also reliably identify frequent 10-node motifs, which is well beyond the size limit of exact enumeration approaches. And last, we show that SPMiner can find large up to 20 node motifs with 10-100x higher frequency than those found by current approximate methods.


FlightLLM: Efficient Large Language Model Inference with a Complete Mapping Flow on FPGAs

arXiv.org Artificial Intelligence

Transformer-based Large Language Models (LLMs) have made a significant impact on various domains. However, LLMs' efficiency suffers from both heavy computation and memory overheads. Compression techniques like sparsification and quantization are commonly used to mitigate the gap between LLM's computation/memory overheads and hardware capacity. However, existing GPU and transformer-based accelerators cannot efficiently process compressed LLMs, due to the following unresolved challenges: low computational efficiency, underutilized memory bandwidth, and large compilation overheads. This paper proposes FlightLLM, enabling efficient LLMs inference with a complete mapping flow on FPGAs. In FlightLLM, we highlight an innovative solution that the computation and memory overhead of LLMs can be solved by utilizing FPGA-specific resources (e.g., DSP48 and heterogeneous memory hierarchy). We propose a configurable sparse DSP chain to support different sparsity patterns with high computation efficiency. Second, we propose an always-on-chip decode scheme to boost memory bandwidth with mixed-precision support. Finally, to make FlightLLM available for real-world LLMs, we propose a length adaptive compilation method to reduce the compilation overhead. Implemented on the Xilinx Alveo U280 FPGA, FlightLLM achieves 6.0$\times$ higher energy efficiency and 1.8$\times$ better cost efficiency against commercial GPUs (e.g., NVIDIA V100S) on modern LLMs (e.g., LLaMA2-7B) using vLLM and SmoothQuant under the batch size of one. FlightLLM beats NVIDIA A100 GPU with 1.2$\times$ higher throughput using the latest Versal VHK158 FPGA.


DeSCo: Towards Generalizable and Scalable Deep Subgraph Counting

arXiv.org Artificial Intelligence

We introduce DeSCo, a scalable neural deep subgraph counting pipeline, designed to accurately predict both the count and occurrence position of queries on target graphs post single training. Firstly, DeSCo uses a novel canonical partition and divides the large target graph into small neighborhood graphs, greatly reducing the count variation while guaranteeing no missing or double-counting. Secondly, neighborhood counting uses an expressive subgraph-based heterogeneous graph neural network to accurately count in each neighborhood. Finally, gossip propagation propagates neighborhood counts with learnable gates to harness the inductive biases of motif counts. DeSCo is evaluated on eight real-world datasets from various domains. It outperforms state-of-the-art neural methods with 137x improvement in the mean squared error of count prediction, while maintaining the polynomial runtime complexity. Our open source project is at https://github.com/fuvty/DeSCo.


High-Resolution Boundary Detection for Medical Image Segmentation with Piece-Wise Two-Sample T-Test Augmented Loss

arXiv.org Artificial Intelligence

Fully automatic segmentation methods, such as liver and liver tumor segmentation, brain and brain tumor segmentation, optic disc segmentation, cell segmentation, lung segmentation, pulmonary nodule segmentation, and cardiac image segmentation [2], are essential for the diagnosis of serious diseases [3]. Therefore, it is important to improve the efficiency and accuracy of medical image segmentation methods. Medical image segmentation involves segmenting specific organs (e.g., the pancreas, liver, and bladder), determining certain functional parts of an organ (e.g., cardiac segmentation and retinal vessel segmentation), and identifying tumors in the organs. Medical images can generally be categorized according to the imaging technology and data form. Imaging technology includes X-ray photos, computed tomography, magnetic resonance imaging (MRI), and ultrasound imaging. Raw measurements are transformed into pixelated imaging data as part of the standard process. Although the original data are mostly three-dimensional images, two-dimensional slices are often created according to clinical procedure protocols that target specific applications. Most medical image segmentation methods are designed for two-dimensional slices.