Goto

Collaborating Authors

 Ferrara, Emilio


Network-informed Prompt Engineering against Organized Astroturf Campaigns under Extreme Class Imbalance

arXiv.org Artificial Intelligence

Detecting organized political campaigns is of paramount importance in fighting against disinformation on social media. Existing approaches for the identification of such organized actions employ techniques mostly from network science, graph machine learning and natural language processing. Their ultimate goal is to analyze the relationships and interactions (e.g. re-posting) among users and the textual similarities of their posts. Despite their effectiveness in recognizing astroturf campaigns, these methods face significant challenges, notably the class imbalance in available training datasets. To mitigate this issue, recent methods usually resort to data augmentation or increasing the number of positive samples, which may not always be feasible or sufficient in real-world settings. Following a different path, in this paper, we propose a novel framework for identifying astroturf campaigns based solely on large language models (LLMs), introducing a Balanced Retrieval-Augmented Generation (Balanced RAG) component. Our approach first gives both textual information concerning the posts (in our case tweets) and the user interactions of the social network as input to a language model. Then, through prompt engineering and the proposed Balanced RAG method, it effectively detects coordinated disinformation campaigns on X (Twitter). The proposed framework does not require any training or fine-tuning of the language model. Instead, by strategically harnessing the strengths of prompt engineering and Balanced RAG, it facilitates LLMs to overcome the effects of class imbalance and effectively identify coordinated political campaigns. The experimental results demonstrate that by incorporating the proposed prompt engineering and Balanced RAG methods, our framework outperforms the traditional graph-based baselines, achieving 2x-3x improvements in terms of precision, recall and F1 scores.


IOHunter: Graph Foundation Model to Uncover Online Information Operations

arXiv.org Artificial Intelligence

Social media platforms have become vital spaces for public discourse, serving as modern agor\'as where a wide range of voices influence societal narratives. However, their open nature also makes them vulnerable to exploitation by malicious actors, including state-sponsored entities, who can conduct information operations (IOs) to manipulate public opinion. The spread of misinformation, false news, and misleading claims threatens democratic processes and societal cohesion, making it crucial to develop methods for the timely detection of inauthentic activity to protect the integrity of online discourse. In this work, we introduce a methodology designed to identify users orchestrating information operations, a.k.a. \textit{IO drivers}, across various influence campaigns. Our framework, named \texttt{IOHunter}, leverages the combined strengths of Language Models and Graph Neural Networks to improve generalization in \emph{supervised}, \emph{scarcely-supervised}, and \emph{cross-IO} contexts. Our approach achieves state-of-the-art performance across multiple sets of IOs originating from six countries, significantly surpassing existing approaches. This research marks a step toward developing Graph Foundation Models specifically tailored for the task of IO detection on social media platforms.


Hybrid Forecasting of Geopolitical Events

arXiv.org Artificial Intelligence

Sound decision-making relies on accurate prediction for tangible outcomes ranging from military conflict to disease outbreaks. To improve crowdsourced forecasting accuracy, we developed SAGE, a hybrid forecasting system that combines human and machine generated forecasts. The system provides a platform where users can interact with machine models and thus anchor their judgments on an objective benchmark. The system also aggregates human and machine forecasts weighting both for propinquity and based on assessed skill while adjusting for overconfidence. We present results from the Hybrid Forecasting Competition (HFC) - larger than comparable forecasting tournaments - including 1085 users forecasting 398 real-world forecasting problems over eight months. Our main result is that the hybrid system generated more accurate forecasts compared to a human-only baseline which had no machine generated predictions. We found that skilled forecasters who had access to machine-generated forecasts outperformed those who only viewed historical data. We also demonstrated the inclusion of machine-generated forecasts in our aggregation algorithms improved performance, both in terms of accuracy and scalability. This suggests that hybrid forecasting systems, which potentially require fewer human resources, can be a viable approach for maintaining a competitive level of accuracy over a larger number of forecasting questions.


Political-LLM: Large Language Models in Political Science

arXiv.org Artificial Intelligence

In recent years, large language models (LLMs) have been widely adopted in political science tasks such as election prediction, sentiment analysis, policy impact assessment, and misinformation detection. Meanwhile, the need to systematically understand how LLMs can further revolutionize the field also becomes urgent. In this work, we--a multidisciplinary team of researchers spanning computer science and political science--present the first principled framework termed Political-LLM to advance the comprehensive understanding of integrating LLMs into computational political science. Specifically, we first introduce a fundamental taxonomy classifying the existing explorations into two perspectives: political science and computational methodologies. In particular, from the political science perspective, we highlight the role of LLMs in automating predictive and generative tasks, simulating behavior dynamics, and improving causal inference through tools like counterfactual generation; from a computational perspective, we introduce advancements in data preparation, fine-tuning, and evaluation methods for LLMs that are tailored to political contexts. We identify key challenges and future directions, emphasizing the development of domain-specific datasets, addressing issues of bias and fairness, incorporating human expertise, and redefining evaluation criteria to align with the unique requirements of computational political science. Political-LLM seeks to serve as a guidebook for researchers to foster an informed, ethical, and impactful use of Artificial Intelligence in political science. Our online resource is available at: http://political-llm.org/. Corresponding authors: Yushun Dong (yd24f@fsu.edu) is with the Department of Computer Science, Florida State University; Yue Zhao (yzhao010@usc.edu) is with the Department of Computer Science, University of Southern California; Fred Gui (pgui@lsu.edu) is with the Department of Political Science, Louisiana State University; Catherine Chen (catherinechen@lsu.edu) is with the Manship School of Mass Communication and the Department of Political Science, Louisiana State University.


Explaining Mixtures of Sources in News Articles

arXiv.org Artificial Intelligence

Human writers plan, then write. For large language models (LLMs) to play a role in longer-form article generation, we must understand the planning steps humans make before writing. We explore one kind of planning, source-selection in news, as a case-study for evaluating plans in long-form generation. We ask: why do specific stories call for specific kinds of sources? We imagine a generative process for story writing where a source-selection schema is first selected by a journalist, and then sources are chosen based on categories in that schema. Learning the article's plan means predicting the schema initially chosen by the journalist. Working with professional journalists, we adapt five existing schemata and introduce three new ones to describe journalistic plans for the inclusion of sources in documents. Then, inspired by Bayesian latent-variable modeling, we develop metrics to select the most likely plan, or schema, underlying a story, which we use to compare schemata. We find that two schemata: stance and social affiliation best explain source plans in most documents. However, other schemata like textual entailment explain source plans in factually rich topics like "Science". Finally, we find we can predict the most suitable schema given just the article's headline with reasonable accuracy. We see this as an important case-study for human planning, and provides a framework and approach for evaluating other kinds of plans. We release a corpora, NewsSources, with annotations for 4M articles.


FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs

arXiv.org Artificial Intelligence

The fact-checking process, though complex and labor-intensive encompassing several stages from claim identification to drawing final conclusions, [5, 7] could be made more efficient through AI tools [1]. It is, however, critical to note that a complete automation could undermine journalistic principles and practices [18], thereby indicating the goal lies in enhancing, not replacing, human expertise [4]. A key element in monitoring the spread of false claims across various communication platforms is claim matching, where new instances of previously fact-checked claims are identified [21]. The importance of claim matching stems from the tendency of false claims to be reused and reiterated in different formats [18]. Effective claim matching can expedite the early detection of misinformation, content moderation, and automated debunking [8]. This paper explores the potential utilization of large language models (LLMs) to support the claim matching stage in the fact-checking procedure. Our study reveals that when fine-tuned appropriately, LLMs can effectively match claims. Our framework could benefit fact-checkers by minimizing redundant verification, support online platforms in content moderation, and assist researchers in the extensive analysis of misinformation from a large corpus.


GenAI Against Humanity: Nefarious Applications of Generative Artificial Intelligence and Large Language Models

arXiv.org Artificial Intelligence

Charting the Landscape of Nefarious Applications of Generative Artificial Intelligence and Large Language Models Generative Artificial Intelligence (GenAI) and Large Language Models (LLMs) are marvels of technology; celebrated for their prowess in natural language processing and multimodal content generation, they promise a transformative future. But as with all powerful tools, they come with their shadows. Picture living in a world where deepfakes are indistinguishable from reality, where synthetic identities orchestrate malicious campaigns, and where targeted misinformation or scams are crafted with unparalleled precision. Welcome to the darker side of GenAI applications. This article is not just a journey through the meanders of potential misuse of GenAI and LLMs, but also a call to recognize the urgency of the challenges ahead. As we navigate the seas of misinformation campaigns, malicious content generation, and the eerie creation of sophisticated malware, we'll uncover the societal implications that ripple through the GenAI revolution we are witnessing. From AI-powered botnets on social media platforms to the unnerving potential of AI to generate fabricated identities, or alibis made of synthetic realities, the stakes have never been higher. The lines between the virtual and the real worlds are blurring, and the consequences of potential GenAI's nefarious applications impact us all. This article serves both as a synthesis of rigorous research presented on the risks of GenAI and misuse of LLMs and as a thought-provoking vision of the different types of harmful GenAI applications we might encounter in the near future, and some ways we can prepare for them. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. INTRODUCTION In March 2019, a UK-based energy firm's CEO was duped out of $243,000.


Social-LLM: Modeling User Behavior at Scale using Language Models and Social Network Data

arXiv.org Artificial Intelligence

The proliferation of social network data has unlocked unprecedented opportunities for extensive, data-driven exploration of human behavior. The structural intricacies of social networks offer insights into various computational social science issues, particularly concerning social influence and information diffusion. However, modeling large-scale social network data comes with computational challenges. Though large language models make it easier than ever to model textual content, any advanced network representation methods struggle with scalability and efficient deployment to out-of-sample users. In response, we introduce a novel approach tailored for modeling social network data in user detection tasks. This innovative method integrates localized social network interactions with the capabilities of large language models. Operating under the premise of social network homophily, which posits that socially connected users share similarities, our approach is designed to address these challenges. We conduct a thorough evaluation of our method across seven real-world social network datasets, spanning a diverse range of topics and detection tasks, showcasing its applicability to advance research in computational social science.


Can Language Model Moderators Improve the Health of Online Discourse?

arXiv.org Artificial Intelligence

Human moderation of online conversation is essential to maintaining civility and focus in a dialogue, but is challenging to scale and harmful to moderators. The inclusion of sophisticated natural language generation modules as a force multiplier aid moderators is a tantalizing prospect, but adequate evaluation approaches have so far been elusive. In this paper, we establish a systematic definition of conversational moderation effectiveness through a multidisciplinary lens that incorporates insights from social science. We then propose a comprehensive evaluation framework that uses this definition to asses models' moderation capabilities independently of human intervention. With our framework, we conduct the first known study Figure 1: While banning users or deleting their comments of conversational dialogue models as moderators, may push them towards echo chambers (left), conversational finding that appropriately prompted models moderation can guide users towards more can provide specific and fair feedback on constructive behavior (right). Recent developments in toxic behavior but struggle to influence users to conversational AI present an opportunity to perform this increase their levels of respect and cooperation.


Tracking the Newsworthiness of Public Documents

arXiv.org Artificial Intelligence

Journalists must find stories in huge amounts of textual data (e.g. leaks, bills, press releases) as part of their jobs: determining when and why text becomes news can help us understand coverage patterns and help us build assistive tools. Yet, this is challenging because very few labelled links exist, language use between corpora is very different, and text may be covered for a variety of reasons. In this work we focus on news coverage of local public policy in the San Francisco Bay Area by the San Francisco Chronicle. First, we gather news articles, public policy documents and meeting recordings and link them using probabilistic relational modeling, which we show is a low-annotation linking methodology that outperforms other retrieval-based baselines. Second, we define a new task: newsworthiness prediction, to predict if a policy item will get covered. We show that different aspects of public policy discussion yield different newsworthiness signals. Finally we perform human evaluation with expert journalists and show our systems identify policies they consider newsworthy with 68% F1 and our coverage recommendations are helpful with an 84% win-rate.