Farinelli, Alessandro
Sentinel: Multi-Patch Transformer with Temporal and Channel Attention for Time Series Forecasting
Villaboni, Davide, Castellini, Alberto, Danesi, Ivan Luciano, Farinelli, Alessandro
Transformer-based time series forecasting has recently gained strong interest due to the ability of transformers to model sequential data. Most of the state-of-the-art architectures exploit either temporal or inter-channel dependencies, limiting their effectiveness in multivariate time-series forecasting where both types of dependencies are crucial. We propose Sentinel, a full transformer-based architecture composed of an encoder able to extract contextual information from the channel dimension, and a decoder designed to capture causal relations and dependencies across the temporal dimension. Additionally, we introduce a multi-patch attention mechanism, which leverages the patching process to structure the input sequence in a way that can be naturally integrated into the transformer architecture, replacing the multi-head splitting process. Extensive experiments on standard benchmarks demonstrate that Sentinel, because of its ability to "monitor" both the temporal and the inter-channel dimension, achieves better or comparable performance with respect to state-of-the-art approaches.
Seldonian Reinforcement Learning for Ad Hoc Teamwork
Zorzi, Edoardo, Castellini, Alberto, Bakopoulos, Leonidas, Chalkiadakis, Georgios, Farinelli, Alessandro
Most offline RL algorithms return optimal policies but do not provide statistical guarantees on undesirable behaviors. This could generate reliability issues in safety-critical applications, such as in some multiagent domains where agents, and possibly humans, need to interact to reach their goals without harming each other. In this work, we propose a novel offline RL approach, inspired by Seldonian optimization, which returns policies with good performance and statistically guaranteed properties with respect to predefined undesirable behaviors. In particular, our focus is on Ad Hoc Teamwork settings, where agents must collaborate with new teammates without prior coordination. Our method requires only a pre-collected dataset, a set of candidate policies for our agent, and a specification about the possible policies followed by the other players -- it does not require further interactions, training, or assumptions on the type and architecture of the policies. We test our algorithm in Ad Hoc Teamwork problems and show that it consistently finds reliable policies while improving sample efficiency with respect to standard ML baselines.
Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments
Bonanni, Lorenzo, Meli, Daniele, Castellini, Alberto, Farinelli, Alessandro
Online motion planning is a challenging problem for intelligent robots moving in dense environments with dynamic obstacles, e.g., crowds. In this work, we propose a novel approach for optimal and safe online motion planning with minimal information about dynamic obstacles. Specifically, our approach requires only the current position of the obstacles and their maximum speed, but it does not need any information about their exact trajectories or dynamic model. The proposed methodology combines Monte Carlo Tree Search (MCTS), for online optimal planning via model simulations, with Velocity Obstacles (VO), for obstacle avoidance. We perform experiments in a cluttered simulated environment with walls, and up to 40 dynamic obstacles moving with random velocities and directions. With an ablation study, we show the key contribution of VO in scaling up the efficiency of MCTS, selecting the safest and most rewarding actions in the tree of simulations. Moreover, we show the superiority of our methodology with respect to state-of-the-art planners, including Non-linear Model Predictive Control (NMPC), in terms of improved collision rate, computational and task performance.
Online inductive learning from answer sets for efficient reinforcement learning exploration
Veronese, Celeste, Meli, Daniele, Farinelli, Alessandro
This paper presents a novel approach combining inductive logic programming with reinforcement learning to improve training performance and explainability. We exploit inductive learning of answer set programs from noisy examples to learn a set of logical rules representing an explainable approximation of the agent policy at each batch of experience. We then perform answer set reasoning on the learned rules to guide the exploration of the learning agent at the next batch, without requiring inefficient reward shaping and preserving optimality with soft bias. The entire procedure is conducted during the online execution of the reinforcement learning algorithm. We preliminarily validate the efficacy of our approach by integrating it into the Q-learning algorithm for the Pac-Man scenario in two maps of increasing complexity. Our methodology produces a significant boost in the discounted return achieved by the agent, even in the first batches of training. Moreover, inductive learning does not compromise the computational time required by Q-learning and learned rules quickly converge to an explanation of the agent policy.
Collaborative Instance Navigation: Leveraging Agent Self-Dialogue to Minimize User Input
Taioli, Francesco, Zorzi, Edoardo, Franchi, Gianni, Castellini, Alberto, Farinelli, Alessandro, Cristani, Marco, Wang, Yiming
Existing embodied instance goal navigation tasks, driven by natural language, assume human users to provide complete and nuanced instance descriptions prior to the navigation, which can be impractical in the real world as human instructions might be brief and ambiguous. To bridge this gap, we propose a new task, Collaborative Instance Navigation (CoIN), with dynamic agent-human interaction during navigation to actively resolve uncertainties about the target instance in natural, template-free, open-ended dialogues. To address CoIN, we propose a novel method, Agent-user Interaction with UncerTainty Awareness (AIUTA), leveraging the perception capability of Vision Language Models (VLMs) and the capability of Large Language Models (LLMs). First, upon object detection, a Self-Questioner model initiates a self-dialogue to obtain a complete and accurate observation description, while a novel uncertainty estimation technique mitigates inaccurate VLM perception. Then, an Interaction Trigger module determines whether to ask a question to the user, continue or halt navigation, minimizing user input. For evaluation, we introduce CoIN-Bench, a benchmark supporting both real and simulated humans. AIUTA achieves competitive performance in instance navigation against state-of-the-art methods, demonstrating great flexibility in handling user inputs.
Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations
Marzari, Luca, Leofante, Francesco, Cicalese, Ferdinando, Farinelli, Alessandro
We study the problem of assessing the robustness of counterfactual explanations for deep learning models. We focus on $\textit{plausible model shifts}$ altering model parameters and propose a novel framework to reason about the robustness property in this setting. To motivate our solution, we begin by showing for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete. As this (practically) rules out the existence of scalable algorithms for exactly computing robustness, we propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees while preserving scalability. Remarkably, and differently from existing solutions targeting plausible model shifts, our approach does not impose requirements on the network to be analyzed, thus enabling robustness analysis on a wider range of architectures. Experiments on four binary classification datasets indicate that our method improves the state of the art in generating robust explanations, outperforming existing methods on a range of metrics.
Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning
Corsi, Davide, Camponogara, Davide, Farinelli, Alessandro
An exciting and promising frontier for Deep Reinforcement Learning (DRL) is its application to real-world robotic systems. While modern DRL approaches achieved remarkable successes in many robotic scenarios (including mobile robotics, surgical assistance, and autonomous driving) unpredictable and non-stationary environments can pose critical challenges to such methods. These features can significantly undermine fundamental requirements for a successful training process, such as the Markovian properties of the transition model. To address this challenge, we propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and DRL. In more detail, we show that our benchmarking environment is problematic even for state-of-the-art DRL approaches that may struggle to generate reliable policies in terms of generalization power and safety. Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques (such as curriculum learning and learnable hyperparameters). Our extensive empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results. Our simulation environment and training baselines are freely available to facilitate further research on this open problem and encourage collaboration in the field.
Mind the Error! Detection and Localization of Instruction Errors in Vision-and-Language Navigation
Taioli, Francesco, Rosa, Stefano, Castellini, Alberto, Natale, Lorenzo, Del Bue, Alessio, Farinelli, Alessandro, Cristani, Marco, Wang, Yiming
Vision-and-Language Navigation in Continuous Environments (VLN-CE) is one of the most intuitive yet challenging embodied AI tasks. Agents are tasked to navigate towards a target goal by executing a set of low-level actions, following a series of natural language instructions. All VLN-CE methods in the literature assume that language instructions are exact. However, in practice, instructions given by humans can contain errors when describing a spatial environment due to inaccurate memory or confusion. Current VLN-CE benchmarks do not address this scenario, making the state-of-the-art methods in VLN-CE fragile in the presence of erroneous instructions from human users. For the first time, we propose a novel benchmark dataset that introduces various types of instruction errors considering potential human causes. This benchmark provides valuable insight into the robustness of VLN systems in continuous environments. We observe a noticeable performance drop (up to -25%) in Success Rate when evaluating the state-of-the-art VLN-CE methods on our benchmark. Moreover, we formally define the task of Instruction Error Detection and Localization, and establish an evaluation protocol on top of our benchmark dataset. We also propose an effective method, based on a cross-modal transformer architecture, that achieves the best performance in error detection and localization, compared to baselines. Surprisingly, our proposed method has revealed errors in the validation set of the two commonly used datasets for VLN-CE, i.e., R2R-CE and RxR-CE, demonstrating the utility of our technique in other tasks. Code and dataset will be made available upon acceptance at https://intelligolabs.github.io/R2RIE-CE
Planning and Inverse Kinematics of Hyper-Redundant Manipulators with VO-FABRIK
Morasso, Cristian, Meli, Daniele, Divet, Yann, Sessa, Salvatore, Farinelli, Alessandro
Hyper-redundant Robotic Manipulators (HRMs) offer great dexterity and flexibility of operation, but solving Inverse Kinematics (IK) is challenging. In this work, we introduce VO-FABRIK, an algorithm combining Forward and Backward Reaching Inverse Kinematics (FAB-RIK) for repeatable deterministic IK computation, and an approach inspired from velocity obstacles to perform path planning under collision and joint limits constraints. We show preliminary results on an industrial HRM with 19 actuated joints. Our algorithm achieves good performance where a state-of-the-art IK solver fails.
Learning Logic Specifications for Policy Guidance in POMDPs: an Inductive Logic Programming Approach
Meli, Daniele, Castellini, Alberto, Farinelli, Alessandro
Partially Observable Markov Decision Processes (POMDPs) are a powerful framework for planning under uncertainty. They allow to model state uncertainty as a belief probability distribution. Approximate solvers based on Monte Carlo sampling show great success to relax the computational demand and perform online planning. However, scaling to complex realistic domains with many actions and long planning horizons is still a major challenge, and a key point to achieve good performance is guiding the action-selection process with domain-dependent policy heuristics which are tailored for the specific application domain. We propose to learn high-quality heuristics from POMDP traces of executions generated by any solver. We convert the belief-action pairs to a logical semantics, and exploit data- and time-efficient Inductive Logic Programming (ILP) to generate interpretable belief-based policy specifications, which are then used as online heuristics. We evaluate thoroughly our methodology on two notoriously challenging POMDP problems, involving large action spaces and long planning horizons, namely, rocksample and pocman. Considering different state-of-the-art online POMDP solvers, including POMCP, DESPOT and AdaOPS, we show that learned heuristics expressed in Answer Set Programming (ASP) yield performance superior to neural networks and similar to optimal handcrafted task-specific heuristics within lower computational time. Moreover, they well generalize to more challenging scenarios not experienced in the training phase (e.g., increasing rocks and grid size in rocksample, incrementing the size of the map and the aggressivity of ghosts in pocman).