Goto

Collaborating Authors

 Farimani, Amir Barati


Generative Latent Neural PDE Solver using Flow Matching

arXiv.org Artificial Intelligence

Autoregressive next-step prediction models have become the de-facto standard for building data-driven neural solvers to forecast time-dependent partial differential equations (PDEs). Denoise training that is closely related to diffusion probabilistic model has been shown to enhance the temporal stability of neural solvers, while its stochastic inference mechanism enables ensemble predictions and uncertainty quantification. In principle, such training involves sampling a series of discretized diffusion timesteps during both training and inference, inevitably increasing computational overhead. In addition, most diffusion models apply isotropic Gaussian noise on structured, uniform grids, limiting their adaptability to irregular domains. We propose a latent diffusion model for PDE simulation that embeds the PDE state in a lower-dimensional latent space, which significantly reduces computational costs. Our framework uses an autoencoder to map different types of meshes onto a unified structured latent grid, capturing complex geometries. By analyzing common diffusion paths, we propose to use a coarsely sampled noise schedule from flow matching for both training and testing. Numerical experiments show that the proposed model outperforms several deterministic baselines in both accuracy and long-term stability, highlighting the potential of diffusion-based approaches for robust data-driven PDE learning.


Protein Structure-Function Relationship: A Kernel-PCA Approach for Reaction Coordinate Identification

arXiv.org Artificial Intelligence

In this study, we propose a Kernel-PCA model designed to capture structure-function relationships in a protein. This model also enables ranking of reaction coordinates according to their impact on protein properties. By leveraging machine learning techniques, including Kernel and principal component analysis (PCA), our model uncovers meaningful patterns in high-dimensional protein data obtained from molecular dynamics (MD) simulations. The effectiveness of our model in accurately identifying reaction coordinates has been demonstrated through its application to a G protein-coupled receptor. Furthermore, this model utilizes a network-based approach to uncover correlations in the dynamic behavior of residues associated with a specific protein property. These findings underscore the potential of our model as a powerful tool for protein structure-function analysis and visualization.


LLM-Drone: Aerial Additive Manufacturing with Drones Planned Using Large Language Models

arXiv.org Artificial Intelligence

Additive manufacturing (AM) has transformed the production landscape by enabling the precision creation of complex geometries. However, AM faces limitations when applied to challenging environments, such as elevated surfaces and remote locations. Aerial additive manufacturing, facilitated by drones, presents a solution to these challenges. However, despite advances in methods for the planning, control, and localization of drones, the accuracy of these methods is insufficient to run traditional feedforward extrusion-based additive manufacturing processes (such as Fused Deposition Manufacturing). Recently, the emergence of LLMs has revolutionized various fields by introducing advanced semantic reasoning and real-time planning capabilities. This paper proposes the integration of LLMs with aerial additive manufacturing to assist with the planning and execution of construction tasks, granting greater flexibility and enabling a feed-back based design and construction system. Using the semantic understanding and adaptability of LLMs, we can overcome the limitations of drone based systems by dynamically generating and adapting building plans on site, ensuring efficient and accurate construction even in constrained environments. Our system is able to design and build structures given only a semantic prompt and has shown success in understanding the spatial environment despite tight planning constraints. Our method's feedback system enables replanning using the LLM if the manufacturing process encounters unforeseen errors, without requiring complicated heuristics or evaluation functions. Combining the semantic planning with automatic error correction, our system achieved a 90% build accuracy, converting simple text prompts to build structures.


NANOGPT: A Query-Driven Large Language Model Retrieval-Augmented Generation System for Nanotechnology Research

arXiv.org Artificial Intelligence

This paper presents the development and application of a Large Language Model Retrieval-Augmented Generation (LLM-RAG) system tailored for nanotechnology research. The system leverages the capabilities of a sophisticated language model to serve as an intelligent research assistant, enhancing the efficiency and comprehensiveness of literature reviews in the nanotechnology domain. Central to this LLM-RAG system is its advanced query backend retrieval mechanism, which integrates data from multiple reputable sources. The system retrieves relevant literature by utilizing Google Scholar's advanced search, and scraping open-access papers from Elsevier, Springer Nature, and ACS Publications. This multifaceted approach ensures a broad and diverse collection of up-to-date scholarly articles and papers. The proposed system demonstrates significant potential in aiding researchers by providing a streamlined, accurate, and exhaustive literature retrieval process, thereby accelerating research advancements in nanotechnology. The effectiveness of the LLM-RAG system is validated through rigorous testing, illustrating its capability to significantly reduce the time and effort required for comprehensive literature reviews, while maintaining high accuracy, query relevance and outperforming standard, publicly available LLMS.


AdditiveLLM: Large Language Models Predict Defects in Additive Manufacturing

arXiv.org Artificial Intelligence

In this work we investigate the ability of large language models to predict additive manufacturing defect regimes given a set of process parameter inputs. For this task we utilize a process parameter defect dataset to fine-tune a collection of models, titled AdditiveLLM, for the purpose of predicting potential defect regimes including Keyholing, Lack of Fusion, and Balling. We compare different methods of input formatting in order to gauge the model's performance to correctly predict defect regimes on our sparse Baseline dataset and our natural language Prompt dataset. The model displays robust predictive capability, achieving an accuracy of 93\% when asked to provide the defect regimes associated with a set of process parameters. The incorporation of natural language input further simplifies the task of process parameters selection, enabling users to identify optimal settings specific to their build.


Modeling Melt Pool Features and Spatter Using Symbolic Regression and Machine Learning

arXiv.org Artificial Intelligence

Additive manufacturing (AM) is a rapidly evolving technology that has attracted applications across a wide range of fields due to its ability to fabricate complex geometries. However, one of the key challenges in AM is achieving consistent print quality. This inconsistency is often attributed to uncontrolled melt pool dynamics, partly caused by spatter which can lead to defects. Therefore, capturing and controlling the evolution of the melt pool is crucial for enhancing process stability and part quality. In this study, we developed a framework to support decision-making in AM operations, facilitating quality control and minimizing defects via machine learning (ML) and polynomial symbolic regression models. We implemented experimentally validated computational tools as a cost-effective approach to collect large datasets from laser powder bed fusion (LPBF) processes. For a dataset consisting of 281 process conditions, parameters such as melt pool dimensions (length, width, depth), melt pool geometry (area, volume), and volume indicated as spatter were extracted. Using machine learning (ML) and polynomial symbolic regression models, a high R2 of over 95 % was achieved in predicting the melt pool dimensions and geometry features for both the training and testing datasets, with either process conditions (power and velocity) or melt pool dimensions as the model inputs. In the case of volume indicated as spatter, R2 improved after logarithmic transforming the model inputs, which was either the process conditions or the melt pool dimensions. Among the investigated ML models, the ExtraTree model achieved the highest R2 values of 96.7 % and 87.5 %.


Text to Band Gap: Pre-trained Language Models as Encoders for Semiconductor Band Gap Prediction

arXiv.org Artificial Intelligence

In this study, we explore the use of a transformer-based language model as an encoder to predict the band gaps of semiconductor materials directly from their text descriptions. Quantum chemistry simulations, including Density Functional Theory (DFT), are computationally intensive and time-consuming, which limits their practicality for high-throughput material screening, particularly for complex systems. Shallow machine learning (ML) models, while effective, often require extensive data preprocessing to convert non-numerical material properties into numerical inputs. In contrast, our approach leverages textual data directly, bypassing the need for complex feature engineering. We generate material descriptions in two formats: formatted strings combining features and natural language text generated using the ChatGPT API. We demonstrate that the RoBERTa model, pre-trained on natural language processing tasks, performs effectively as an encoder for prediction tasks. With minimal fine-tuning, it achieves a mean absolute error (MAE) of approximately 0.33 eV, performing better than shallow machine learning models such as Support Vector Regression, Random Forest, and XGBoost. Even when only the linear regression head is trained while keeping the RoBERTa encoder layers frozen, the accuracy remains nearly identical to that of the fully trained model. This demonstrates that the pre-trained RoBERTa encoder is highly adaptable for processing domain-specific text related to material properties, such as the band gap, significantly reducing the need for extensive retraining. This study highlights the potential of transformer-based language models to serve as efficient and versatile encoders for semiconductor materials property prediction tasks.


Dual Diffusion for Unified Image Generation and Understanding

arXiv.org Artificial Intelligence

Diffusion models have gained tremendous success in text-to-image generation, yet still lag behind with visual understanding tasks, an area dominated by autoregressive vision-language models. We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation that significantly improves on existing diffusion-based multimodal models, and is the first of its kind to support the full suite of vision-language modeling capabilities. Inspired by the multimodal diffusion transformer (MM-DiT) and recent advances in discrete diffusion language modeling, we leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly under a single loss function, which is back-propagated through both branches of the diffusion transformer. The resulting model is highly flexible and capable of a wide range of tasks including image generation, captioning, and visual question answering. Our model attained competitive performance compared to recent unified image understanding and generation models, demonstrating the potential of multimodal diffusion modeling as a promising alternative to autoregressive next-token prediction models.


Predicting Change, Not States: An Alternate Framework for Neural PDE Surrogates

arXiv.org Artificial Intelligence

Neural surrogates for partial differential equations (PDEs) have become popular due to their potential to quickly simulate physics. With a few exceptions, neural surrogates generally treat the forward evolution of time-dependent PDEs as a black box by directly predicting the next state. While this is a natural and easy framework for applying neural surrogates, it can be an over-simplified and rigid framework for predicting physics. In this work, we propose an alternative framework in which neural solvers predict the temporal derivative and an ODE integrator forwards the solution in time, which has little overhead and is broadly applicable across model architectures and PDEs. We find that by simply changing the training target and introducing numerical integration during inference, neural surrogates can gain accuracy and stability. Predicting temporal derivatives also allows models to not be constrained to a specific temporal discretization, allowing for flexible time-stepping during inference or training on higher-resolution PDE data. Lastly, we investigate why this new framework can be beneficial and in what situations does it work well.


Adsorb-Agent: Autonomous Identification of Stable Adsorption Configurations via Large Language Model Agent

arXiv.org Artificial Intelligence

Adsorption energy is a key reactivity descriptor in catalysis, enabling efficient screening for optimal catalysts. However, determining adsorption energy typically requires evaluating numerous adsorbate-catalyst configurations. Current algorithmic approaches rely on exhaustive enumeration of adsorption sites and configurations, which makes the process computationally intensive and does not inherently guarantee the identification of the global minimum energy. In this work, we introduce Adsorb-Agent, a Large Language Model (LLM) agent designed to efficiently identify system-specific stable adsorption configurations corresponding to the global minimum adsorption energy. Adsorb-Agent leverages its built-in knowledge and emergent reasoning capabilities to strategically explore adsorption configurations likely to hold adsorption energy. By reducing the reliance on exhaustive sampling, it significantly decreases the number of initial configurations required while improving the accuracy of adsorption energy predictions. We evaluate Adsorb-Agent's performance across twenty representative systems encompassing a range of complexities. The Adsorb-Agent successfully identifies comparable adsorption energies for 83.7% of the systems and achieves lower energies, closer to the actual global minimum, for 35% of the systems, while requiring significantly fewer initial configurations than conventional methods. Its capability is particularly evident in complex systems, where it identifies lower adsorption energies for 46.7% of systems involving intermetallic surfaces and 66.7% of systems with large adsorbate molecules. These results demonstrate the potential of Adsorb-Agent to accelerate catalyst discovery by reducing computational costs and improving the reliability of adsorption energy predictions.