Fang, Wenjing
Ditto: Quantization-aware Secure Inference of Transformers upon MPC
Wu, Haoqi, Fang, Wenjing, Zheng, Yancheng, Ma, Junming, Tan, Jin, Wang, Yinggui, Wang, Lei
Due to the rising privacy concerns on sensitive client data and trained models like Transformers, secure multi-party computation (MPC) techniques are employed to enable secure inference despite attendant overhead. Existing works attempt to reduce the overhead using more MPC-friendly non-linear function approximations. However, the integration of quantization widely used in plaintext inference into the MPC domain remains unclear. To bridge this gap, we propose the framework named Ditto to enable more efficient quantization-aware secure Transformer inference. Concretely, we first incorporate an MPC-friendly quantization into Transformer inference and employ a quantization-aware distillation procedure to maintain the model utility. Then, we propose novel MPC primitives to support the type conversions that are essential in quantization and implement the quantization-aware MPC execution of secure quantized inference. This approach significantly decreases both computation and communication overhead, leading to improvements in overall efficiency. We conduct extensive experiments on Bert and GPT2 models to evaluate the performance of Ditto. The results demonstrate that Ditto is about $3.14\sim 4.40\times$ faster than MPCFormer (ICLR 2023) and $1.44\sim 2.35\times$ faster than the state-of-the-art work PUMA with negligible utility degradation.
LMSanitator: Defending Prompt-Tuning Against Task-Agnostic Backdoors
Wei, Chengkun, Meng, Wenlong, Zhang, Zhikun, Chen, Min, Zhao, Minghu, Fang, Wenjing, Wang, Lei, Zhang, Zihui, Chen, Wenzhi
Prompt-tuning has emerged as an attractive paradigm for deploying large-scale language models due to its strong downstream task performance and efficient multitask serving ability. Despite its wide adoption, we empirically show that prompt-tuning is vulnerable to downstream task-agnostic backdoors, which reside in the pretrained models and can affect arbitrary downstream tasks. The state-of-the-art backdoor detection approaches cannot defend against task-agnostic backdoors since they hardly converge in reversing the backdoor triggers. To address this issue, we propose LMSanitator, a novel approach for detecting and removing task-agnostic backdoors on Transformer models. Instead of directly inverting the triggers, LMSanitator aims to invert the predefined attack vectors (pretrained models' output when the input is embedded with triggers) of the task-agnostic backdoors, which achieves much better convergence performance and backdoor detection accuracy. LMSanitator further leverages prompt-tuning's property of freezing the pretrained model to perform accurate and fast output monitoring and input purging during the inference phase. Extensive experiments on multiple language models and NLP tasks illustrate the effectiveness of LMSanitator. For instance, LMSanitator achieves 92.8% backdoor detection accuracy on 960 models and decreases the attack success rate to less than 1% in most scenarios.
A Hybrid-Domain Framework for Secure Gradient Tree Boosting
Fang, Wenjing, Chen, Chaochao, Tan, Jin, Yu, Chaofan, Lu, Yufei, Wang, Li, Wang, Lei, Zhou, Jun, X, Alex
Gradient tree boosting (e.g. XGB) is one of the most widely usedmachine learning models in practice. How to build a secure XGB inface of data isolation problem becomes a hot research topic. However, existing works tend to leak intermediate information and thusraise potential privacy risk. In this paper, we propose a novel framework for two parties to build secure XGB with vertically partitioneddata. Specifically, we associate Homomorphic Encryption (HE) domain with Secret Sharing (SS) domain by providing the two-waytransformation primitives. The framework generally promotes theefficiency for privacy preserving machine learning and offers theflexibility to implement other machine learning models. Then weelaborate two secure XGB training algorithms as well as a corresponding prediction algorithm under the hybrid security domains.Next, we compare our proposed two training algorithms throughboth complexity analysis and experiments. Finally, we verify themodel performance on benchmark dataset and further apply ourwork to a real-world scenario.