Fang, Hao-Shu
Dense Policy: Bidirectional Autoregressive Learning of Actions
Su, Yue, Zhan, Xinyu, Fang, Hongjie, Xue, Han, Fang, Hao-Shu, Li, Yong-Lu, Lu, Cewu, Yang, Lixin
Mainstream visuomotor policies predominantly rely on generative models for holistic action prediction, while current autoregressive policies, predicting the next token or chunk, have shown suboptimal results. This motivates a search for more effective learning methods to unleash the potential of autoregressive policies for robotic manipulation. This paper introduces a bidirectionally expanded learning approach, termed Dense Policy, to establish a new paradigm for autoregressive policies in action prediction. It employs a lightweight encoder-only architecture to iteratively unfold the action sequence from an initial single frame into the target sequence in a coarse-to-fine manner with logarithmic-time inference. Extensive experiments validate that our dense policy has superior autoregressive learning capabilities and can surpass existing holistic generative policies. Our policy, example data, and training code will be publicly available upon publication. Project page: https: //selen-suyue.github.io/DspNet/.
AnyDexGrasp: General Dexterous Grasping for Different Hands with Human-level Learning Efficiency
Fang, Hao-Shu, Yan, Hengxu, Tang, Zhenyu, Fang, Hongjie, Wang, Chenxi, Lu, Cewu
We introduce an efficient approach for learning dexterous grasping with minimal data, advancing robotic manipulation capabilities across different robotic hands. Unlike traditional methods that require millions of grasp labels for each robotic hand, our method achieves high performance with human-level learning efficiency: only hundreds of grasp attempts on 40 training objects. The approach separates the grasping process into two stages: first, a universal model maps scene geometry to intermediate contact-centric grasp representations, independent of specific robotic hands. Next, a unique grasp decision model is trained for each robotic hand through real-world trial and error, translating these representations into final grasp poses. Our results show a grasp success rate of 75-95\% across three different robotic hands in real-world cluttered environments with over 150 novel objects, improving to 80-98\% with increased training objects. This adaptable method demonstrates promising applications for humanoid robots, prosthetics, and other domains requiring robust, versatile robotic manipulation.
CAGE: Causal Attention Enables Data-Efficient Generalizable Robotic Manipulation
Xia, Shangning, Fang, Hongjie, Lu, Cewu, Fang, Hao-Shu
Generalization in robotic manipulation remains a critical challenge, particularly when scaling to new environments with limited demonstrations. This paper introduces CAGE, a novel robotic manipulation policy designed to overcome these generalization barriers by integrating a causal attention mechanism. CAGE utilizes the powerful feature extraction capabilities of the vision foundation model DINOv2, combined with LoRA fine-tuning for robust environment understanding. The policy further employs a causal Perceiver for effective token compression and a diffusion-based action prediction head with attention mechanisms to enhance task-specific fine-grained conditioning. With as few as 50 demonstrations from a single training environment, CAGE achieves robust generalization across diverse visual changes in objects, backgrounds, and viewpoints. Extensive experiments validate that CAGE significantly outperforms existing state-of-the-art RGB/RGB-D approaches in various manipulation tasks, especially under large distribution shifts. In similar environments, CAGE offers an average of 42% increase in task completion rate. While all baselines fail to execute the task in unseen environments, CAGE manages to obtain a 43% completion rate and a 51% success rate in average, making a huge step towards practical deployment of robots in real-world settings. Project website: cage-policy.github.io.
FoAR: Force-Aware Reactive Policy for Contact-Rich Robotic Manipulation
He, Zihao, Fang, Hongjie, Chen, Jingjing, Fang, Hao-Shu, Lu, Cewu
Contact-rich tasks present significant challenges for robotic manipulation policies due to the complex dynamics of contact and the need for precise control. Vision-based policies often struggle with the skill required for such tasks, as they typically lack critical contact feedback modalities like force/torque information. To address this issue, we propose FoAR, a force-aware reactive policy that combines high-frequency force/torque sensing with visual inputs to enhance the performance in contact-rich manipulation. Built upon the RISE policy, FoAR incorporates a multimodal feature fusion mechanism guided by a future contact predictor, enabling dynamic adjustment of force/torque data usage between non-contact and contact phases. Its reactive control strategy also allows FoAR to accomplish contact-rich tasks accurately through simple position control. Experimental results demonstrate that FoAR significantly outperforms all baselines across various challenging contact-rich tasks while maintaining robust performance under unexpected dynamic disturbances. Project website: https://tonyfang.net/FoAR/
Towards Effective Utilization of Mixed-Quality Demonstrations in Robotic Manipulation via Segment-Level Selection and Optimization
Chen, Jingjing, Fang, Hongjie, Fang, Hao-Shu, Lu, Cewu
Data is crucial for robotic manipulation, as it underpins the development of robotic systems for complex tasks. While high-quality, diverse datasets enhance the performance and adaptability of robotic manipulation policies, collecting extensive expert-level data is resource-intensive. Consequently, many current datasets suffer from quality inconsistencies due to operator variability, highlighting the need for methods to utilize mixed-quality data effectively. To mitigate these issues, we propose "Select Segments to Imitate" (S2I), a framework that selects and optimizes mixed-quality demonstration data at the segment level, while ensuring plug-and-play compatibility with existing robotic manipulation policies. The framework has three components: demonstration segmentation dividing origin data into meaningful segments, segment selection using contrastive learning to find high-quality segments, and trajectory optimization to refine suboptimal segments for better policy learning. We evaluate S2I through comprehensive experiments in simulation and real-world environments across six tasks, demonstrating that with only 3 expert demonstrations for reference, S2I can improve the performance of various downstream policies when trained with mixed-quality demonstrations. Project website: https://tonyfang.net/s2i/.
Graspness Discovery in Clutters for Fast and Accurate Grasp Detection
Wang, Chenxi, Fang, Hao-Shu, Gou, Minghao, Fang, Hongjie, Gao, Jin, Lu, Cewu
Efficient and robust grasp pose detection is vital for robotic manipulation. For general 6 DoF grasping, conventional methods treat all points in a scene equally and usually adopt uniform sampling to select grasp candidates. However, we discover that ignoring where to grasp greatly harms the speed and accuracy of current grasp pose detection methods. In this paper, we propose "graspness", a quality based on geometry cues that distinguishes graspable areas in cluttered scenes. A look-ahead searching method is proposed for measuring the graspness and statistical results justify the rationality of our method. To quickly detect graspness in practice, we develop a neural network named cascaded graspness model to approximate the searching process. Extensive experiments verify the stability, generality and effectiveness of our graspness model, allowing it to be used as a plug-and-play module for different methods. A large improvement in accuracy is witnessed for various previous methods after equipping our graspness model. Moreover, we develop GSNet, an end-to-end network that incorporates our graspness model for early filtering of low-quality predictions. Experiments on a large-scale benchmark, GraspNet-1Billion, show that our method outperforms previous arts by a large margin (30+ AP) and achieves a high inference speed. The library of GSNet has been integrated into AnyGrasp, which is at https://github.com/graspnet/anygrasp_sdk.
RISE: 3D Perception Makes Real-World Robot Imitation Simple and Effective
Wang, Chenxi, Fang, Hongjie, Fang, Hao-Shu, Lu, Cewu
Precise robot manipulations require rich spatial information in imitation learning. Image-based policies model object positions from fixed cameras, which are sensitive to camera view changes. Policies utilizing 3D point clouds usually predict keyframes rather than continuous actions, posing difficulty in dynamic and contact-rich scenarios. To utilize 3D perception efficiently, we present RISE, an end-to-end baseline for real-world imitation learning, which predicts continuous actions directly from single-view point clouds. It compresses the point cloud to tokens with a sparse 3D encoder. After adding sparse positional encoding, the tokens are featurized using a transformer. Finally, the features are decoded into robot actions by a diffusion head. Trained with 50 demonstrations for each real-world task, RISE surpasses currently representative 2D and 3D policies by a large margin, showcasing significant advantages in both accuracy and efficiency. Experiments also demonstrate that RISE is more general and robust to environmental change compared with previous baselines. Project website: rise-policy.github.io.
Open X-Embodiment: Robotic Learning Datasets and RT-X Models
Collaboration, Open X-Embodiment, Padalkar, Abhishek, Pooley, Acorn, Mandlekar, Ajay, Jain, Ajinkya, Tung, Albert, Bewley, Alex, Herzog, Alex, Irpan, Alex, Khazatsky, Alexander, Rai, Anant, Singh, Anikait, Garg, Animesh, Brohan, Anthony, Raffin, Antonin, Wahid, Ayzaan, Burgess-Limerick, Ben, Kim, Beomjoon, Schรถlkopf, Bernhard, Ichter, Brian, Lu, Cewu, Xu, Charles, Finn, Chelsea, Xu, Chenfeng, Chi, Cheng, Huang, Chenguang, Chan, Christine, Pan, Chuer, Fu, Chuyuan, Devin, Coline, Driess, Danny, Pathak, Deepak, Shah, Dhruv, Bรผchler, Dieter, Kalashnikov, Dmitry, Sadigh, Dorsa, Johns, Edward, Ceola, Federico, Xia, Fei, Stulp, Freek, Zhou, Gaoyue, Sukhatme, Gaurav S., Salhotra, Gautam, Yan, Ge, Schiavi, Giulio, Kahn, Gregory, Su, Hao, Fang, Hao-Shu, Shi, Haochen, Amor, Heni Ben, Christensen, Henrik I, Furuta, Hiroki, Walke, Homer, Fang, Hongjie, Mordatch, Igor, Radosavovic, Ilija, Leal, Isabel, Liang, Jacky, Abou-Chakra, Jad, Kim, Jaehyung, Peters, Jan, Schneider, Jan, Hsu, Jasmine, Bohg, Jeannette, Bingham, Jeffrey, Wu, Jiajun, Wu, Jialin, Luo, Jianlan, Gu, Jiayuan, Tan, Jie, Oh, Jihoon, Malik, Jitendra, Booher, Jonathan, Tompson, Jonathan, Yang, Jonathan, Lim, Joseph J., Silvรฉrio, Joรฃo, Han, Junhyek, Rao, Kanishka, Pertsch, Karl, Hausman, Karol, Go, Keegan, Gopalakrishnan, Keerthana, Goldberg, Ken, Byrne, Kendra, Oslund, Kenneth, Kawaharazuka, Kento, Zhang, Kevin, Rana, Krishan, Srinivasan, Krishnan, Chen, Lawrence Yunliang, Pinto, Lerrel, Fei-Fei, Li, Tan, Liam, Ott, Lionel, Lee, Lisa, Tomizuka, Masayoshi, Spero, Max, Du, Maximilian, Ahn, Michael, Zhang, Mingtong, Ding, Mingyu, Srirama, Mohan Kumar, Sharma, Mohit, Kim, Moo Jin, Kanazawa, Naoaki, Hansen, Nicklas, Heess, Nicolas, Joshi, Nikhil J, Suenderhauf, Niko, Di Palo, Norman, Shafiullah, Nur Muhammad Mahi, Mees, Oier, Kroemer, Oliver, Sanketi, Pannag R, Wohlhart, Paul, Xu, Peng, Sermanet, Pierre, Sundaresan, Priya, Vuong, Quan, Rafailov, Rafael, Tian, Ran, Doshi, Ria, Martรญn-Martรญn, Roberto, Mendonca, Russell, Shah, Rutav, Hoque, Ryan, Julian, Ryan, Bustamante, Samuel, Kirmani, Sean, Levine, Sergey, Moore, Sherry, Bahl, Shikhar, Dass, Shivin, Sonawani, Shubham, Song, Shuran, Xu, Sichun, Haldar, Siddhant, Adebola, Simeon, Guist, Simon, Nasiriany, Soroush, Schaal, Stefan, Welker, Stefan, Tian, Stephen, Dasari, Sudeep, Belkhale, Suneel, Osa, Takayuki, Harada, Tatsuya, Matsushima, Tatsuya, Xiao, Ted, Yu, Tianhe, Ding, Tianli, Davchev, Todor, Zhao, Tony Z., Armstrong, Travis, Darrell, Trevor, Jain, Vidhi, Vanhoucke, Vincent, Zhan, Wei, Zhou, Wenxuan, Burgard, Wolfram, Chen, Xi, Wang, Xiaolong, Zhu, Xinghao, Li, Xuanlin, Lu, Yao, Chebotar, Yevgen, Zhou, Yifan, Zhu, Yifeng, Xu, Ying, Wang, Yixuan, Bisk, Yonatan, Cho, Yoonyoung, Lee, Youngwoon, Cui, Yuchen, Wu, Yueh-Hua, Tang, Yujin, Zhu, Yuke, Li, Yunzhu, Iwasawa, Yusuke, Matsuo, Yutaka, Xu, Zhuo, Cui, Zichen Jeff
Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can such a consolidation happen in robotics? Conventionally, robotic learning methods train a separate model for every application, every robot, and even every environment. Can we instead train generalist X-robot policy that can be adapted efficiently to new robots, tasks, and environments? In this paper, we provide datasets in standardized data formats and models to make it possible to explore this possibility in the context of robotic manipulation, alongside experimental results that provide an example of effective X-robot policies. We assemble a dataset from 22 different robots collected through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We show that a high-capacity model trained on this data, which we call RT-X, exhibits positive transfer and improves the capabilities of multiple robots by leveraging experience from other platforms. More details can be found on the project website $\href{https://robotics-transformer-x.github.io}{\text{robotics-transformer-x.github.io}}$.
Low-Cost Exoskeletons for Learning Whole-Arm Manipulation in the Wild
Fang, Hongjie, Fang, Hao-Shu, Wang, Yiming, Ren, Jieji, Chen, Jingjing, Zhang, Ruo, Wang, Weiming, Lu, Cewu
While humans can use parts of their arms other than the hands for manipulations like gathering and supporting, whether robots can effectively learn and perform the same type of operations remains relatively unexplored. As these manipulations require joint-level control to regulate the complete poses of the robots, we develop AirExo, a low-cost, adaptable, and portable dual-arm exoskeleton, for teleoperation and demonstration collection. As collecting teleoperated data is expensive and time-consuming, we further leverage AirExo to collect cheap in-the-wild demonstrations at scale. Under our in-the-wild learning framework, we show that with only 3 minutes of the teleoperated demonstrations, augmented by diverse and extensive in-the-wild data collected by AirExo, robots can learn a policy that is comparable to or even better than one learned from teleoperated demonstrations lasting over 20 minutes. Experiments demonstrate that our approach enables the model to learn a more general and robust policy across the various stages of the task, enhancing the success rates in task completion even with the presence of disturbances. Project website: https://airexo.github.io/
RH20T: A Comprehensive Robotic Dataset for Learning Diverse Skills in One-Shot
Fang, Hao-Shu, Fang, Hongjie, Tang, Zhenyu, Liu, Jirong, Wang, Chenxi, Wang, Junbo, Zhu, Haoyi, Lu, Cewu
A key challenge in robotic manipulation in open domains is how to acquire diverse and generalizable skills for robots. Recent research in one-shot imitation learning has shown promise in transferring trained policies to new tasks based on demonstrations. This feature is attractive for enabling robots to acquire new skills and improving task and motion planning. However, due to limitations in the training dataset, the current focus of the community has mainly been on simple cases, such as push or pick-place tasks, relying solely on visual guidance. In reality, there are many complex skills, some of which may even require both visual and tactile perception to solve. This paper aims to unlock the potential for an agent to generalize to hundreds of real-world skills with multi-modal perception. To achieve this, we have collected a dataset comprising over 110,000 contact-rich robot manipulation sequences across diverse skills, contexts, robots, and camera viewpoints, all collected in the real world. Each sequence in the dataset includes visual, force, audio, and action information. Moreover, we also provide a corresponding human demonstration video and a language description for each robot sequence. We have invested significant efforts in calibrating all the sensors and ensuring a high-quality dataset. The dataset is made publicly available at rh20t.github.io