Estievenart, Yorick
Risk-Based Thresholding for Reliable Anomaly Detection in Concentrated Solar Power Plants
Estievenart, Yorick, Patra, Sukanya, Taieb, Souhaib Ben
Efficient and reliable operation of Concentrated Solar Power (CSP) plants is essential for meeting the growing demand for sustainable energy. However, high-temperature solar receivers face severe operational risks, such as freezing, deformation, and corrosion, resulting in costly downtime and maintenance. To monitor CSP plants, cameras mounted on solar receivers record infrared images at irregular intervals ranging from one to five minutes throughout the day. Anomalous images can be detected by thresholding an anomaly score, where the threshold is chosen to optimize metrics such as the F1-score on a validation set. This work proposes a framework for generating more reliable decision thresholds with finite-sample coverage guarantees on any chosen risk function. Our framework also incorporates an abstention mechanism, allowing high-risk predictions to be deferred to domain experts. Second, we propose a density forecasting method to estimate the likelihood of an observed image given a sequence of previously observed images, using this likelihood as its anomaly score. Third, we analyze the deployment results of our framework across multiple training scenarios over several months for two CSP plants. This analysis provides valuable insights to our industry partner for optimizing maintenance operations. Finally, given the confidential nature of our dataset, we provide an extended simulated dataset, leveraging recent advancements in generative modeling to create diverse thermal images that simulate multiple CSP plants. Our code is publicly available.
A Unified Comparative Study with Generalized Conformity Scores for Multi-Output Conformal Regression
Dheur, Victor, Fontana, Matteo, Estievenart, Yorick, Desobry, Naomi, Taieb, Souhaib Ben
Conformal prediction provides a powerful framework for constructing distribution-free prediction regions with finite-sample coverage guarantees. While extensively studied in univariate settings, its extension to multi-output problems presents additional challenges, including complex output dependencies and high computational costs, and remains relatively underexplored. In this work, we present a unified comparative study of nine conformal methods with different multivariate base models for constructing multivariate prediction regions within the same framework. This study highlights their key properties while also exploring the connections between them. Additionally, we introduce two novel classes of conformity scores for multi-output regression that generalize their univariate counterparts. These scores ensure asymptotic conditional coverage while maintaining exact finite-sample marginal coverage. One class is compatible with any generative model, offering broad applicability, while the other is computationally efficient, leveraging the properties of invertible generative models. Finally, we conduct a comprehensive empirical evaluation across 13 tabular datasets, comparing all the multi-output conformal methods explored in this work. To ensure a fair and consistent comparison, all methods are implemented within a unified code base.