Engert, Florian
Forecasting Whole-Brain Neuronal Activity from Volumetric Video
Immer, Alexander, Lueckmann, Jan-Matthis, Chen, Alex Bo-Yuan, Li, Peter H., Petkova, Mariela D., Iyer, Nirmala A., Dev, Aparna, Ihrke, Gudrun, Park, Woohyun, Petruncio, Alyson, Weigel, Aubrey, Korff, Wyatt, Engert, Florian, Lichtman, Jeff W., Ahrens, Misha B., Jain, Viren, Januszewski, Michał
Large-scale neuronal activity recordings with fluorescent calcium indicators are increasingly common, yielding high-resolution 2D or 3D videos. Traditional analysis pipelines reduce this data to 1D traces by segmenting regions of interest, leading to inevitable information loss. Inspired by the success of deep learning on minimally processed data in other domains, we investigate the potential of forecasting neuronal activity directly from volumetric videos. To capture long-range dependencies in high-resolution volumetric whole-brain recordings, we design a model with large receptive fields, which allow it to integrate information from distant regions within the brain. We explore the effects of pre-training and perform extensive model selection, analyzing spatio-temporal trade-offs for generating accurate forecasts. Our model outperforms trace-based forecasting approaches on ZAPBench, a recently proposed benchmark on whole-brain activity prediction in zebrafish, demonstrating the advantages of preserving the spatial structure of neuronal activity.
Prospective Learning: Back to the Future
Vogelstein, Joshua T., Verstynen, Timothy, Kording, Konrad P., Isik, Leyla, Krakauer, John W., Etienne-Cummings, Ralph, Ogburn, Elizabeth L., Priebe, Carey E., Burns, Randal, Kutten, Kwame, Knierim, James J., Potash, James B., Hartung, Thomas, Smirnova, Lena, Worley, Paul, Savonenko, Alena, Phillips, Ian, Miller, Michael I., Vidal, Rene, Sulam, Jeremias, Charles, Adam, Cowan, Noah J., Bichuch, Maxim, Venkataraman, Archana, Li, Chen, Thakor, Nitish, Kebschull, Justus M, Albert, Marilyn, Xu, Jinchong, Shuler, Marshall Hussain, Caffo, Brian, Ratnanather, Tilak, Geisa, Ali, Roh, Seung-Eon, Yezerets, Eva, Madhyastha, Meghana, How, Javier J., Tomita, Tyler M., Dey, Jayanta, Ningyuan, null, Huang, null, Shin, Jong M., Kinfu, Kaleab Alemayehu, Chaudhari, Pratik, Baker, Ben, Schapiro, Anna, Jayaraman, Dinesh, Eaton, Eric, Platt, Michael, Ungar, Lyle, Wehbe, Leila, Kepecs, Adam, Christensen, Amy, Osuagwu, Onyema, Brunton, Bing, Mensh, Brett, Muotri, Alysson R., Silva, Gabriel, Puppo, Francesca, Engert, Florian, Hillman, Elizabeth, Brown, Julia, White, Chris, Yang, Weiwei
Research on both natural intelligence (NI) and artificial intelligence (AI) generally assumes that the future resembles the past: intelligent agents or systems (what we call 'intelligence') observe and act on the world, then use this experience to act on future experiences of the same kind. We call this 'retrospective learning'. For example, an intelligence may see a set of pictures of objects, along with their names, and learn to name them. A retrospective learning intelligence would merely be able to name more pictures of the same objects. We argue that this is not what true intelligence is about. In many real world problems, both NIs and AIs will have to learn for an uncertain future. Both must update their internal models to be useful for future tasks, such as naming fundamentally new objects and using these objects effectively in a new context or to achieve previously unencountered goals. This ability to learn for the future we call 'prospective learning'. We articulate four relevant factors that jointly define prospective learning. Continual learning enables intelligences to remember those aspects of the past which it believes will be most useful in the future. Prospective constraints (including biases and priors) facilitate the intelligence finding general solutions that will be applicable to future problems. Curiosity motivates taking actions that inform future decision making, including in previously unmet situations. Causal estimation enables learning the structure of relations that guide choosing actions for specific outcomes, even when the specific action-outcome contingencies have never been observed before. We argue that a paradigm shift from retrospective to prospective learning will enable the communities that study intelligence to unite and overcome existing bottlenecks to more effectively explain, augment, and engineer intelligences.
Point process latent variable models of larval zebrafish behavior
Sharma, Anuj, Johnson, Robert, Engert, Florian, Linderman, Scott
A fundamental goal of systems neuroscience is to understand how neural activity gives rise to natural behavior. In order to achieve this goal, we must first build comprehensive models that offer quantitative descriptions of behavior. We develop a new class of probabilistic models to tackle this challenge in the study of larval zebrafish, an important model organism for neuroscience. Larval zebrafish locomote via sequences of punctate swim bouts--brief flicks of the tail--which are naturally modeled as a marked point process. However, these sequences of swim bouts belie a set of discrete and continuous internal states, latent variables that are not captured by standard point process models. We incorporate these variables as latent marks of a point process and explore various models for their dynamics. To infer the latent variables and fit the parameters of this model, we develop an amortized variational inference algorithm that targets the collapsed posterior distribution, analytically marginalizing out the discrete latent variables. With a dataset of over 120,000 swim bouts, we show that our models reveal interpretable discrete classes of swim bouts and continuous internal states like hunger that modulate their dynamics. These models are a major step toward understanding the natural behavioral program of the larval zebrafish and, ultimately, its neural underpinnings.
Point process latent variable models of larval zebrafish behavior
Sharma, Anuj, Johnson, Robert, Engert, Florian, Linderman, Scott
A fundamental goal of systems neuroscience is to understand how neural activity gives rise to natural behavior. In order to achieve this goal, we must first build comprehensive models that offer quantitative descriptions of behavior. We develop a new class of probabilistic models to tackle this challenge in the study of larval zebrafish, an important model organism for neuroscience. Larval zebrafish locomote via sequences of punctate swim bouts--brief flicks of the tail--which are naturally modeled as a marked point process. However, these sequences of swim bouts belie a set of discrete and continuous internal states, latent variables that are not captured by standard point process models. We incorporate these variables as latent marks of a point process and explore various models for their dynamics. To infer the latent variables and fit the parameters of this model, we develop an amortized variational inference algorithm that targets the collapsed posterior distribution, analytically marginalizing out the discrete latent variables. With a dataset of over 120,000 swim bouts, we show that our models reveal interpretable discrete classes of swim bouts and continuous internal states like hunger that modulate their dynamics. These models are a major step toward understanding the natural behavioral program of the larval zebrafish and, ultimately, its neural underpinnings.