Goto

Collaborating Authors

 Elkind, Edith


On Detecting Nearly Structured Preference Profiles

AAAI Conferences

Structured preference domains, such as, for example, the domains of single-peaked and single-crossing preferences, are known to admit efficient algorithms for many problems in computational social choice. Some of these algorithms extend to preferences that are close to having the respective structural property, i.e., can be made to enjoy this property by performing minor changes to voters' preferences, such as deleting a small number of voters or candidates. However, it has recently been shown that finding the optimal number of voters or candidates to delete in order to achieve the desired structural property is NP-hard for many such domains. In this paper, we show that these problems admit efficient approximation algorithms. Our results apply to all domains that can be characterized in terms of forbidden configurations; this includes, in particular, single-peaked and single-crossing elections. For a large range of scenarios, our approximation results are optimal under a plausible complexity-theoretic assumption. We also provide parameterized complexity results for this class of problems.


Bounding the Cost of Stability in Games over Interaction Networks

AAAI Conferences

We study the stability of cooperative games played over an interaction network, in a model that was introduced by Myerson ['77]. We show that the cost of stability of such games (i.e., the subsidy required to stabilize the game) can be bounded in terms ย of natural parameters of their underlying interaction networks. Specifically, we prove that if the treewidth of the interaction network H is k , then the relative cost of stability of any game played over H is at most k + 1, and if the pathwidth of H is k ', then the relative cost of stability is at most k '. We show that these bounds are tight for all k โ‰ฅ 2 and all k ' โ‰ฅ 1, respectively.


Optimal Manipulation of Voting Rules

AAAI Conferences

Complexity of voting manipulation is a prominent research topic in computational social choice. The voting manipulation literature usually assumes that the manipulator is only concerned with improving the outcome of the election from her perspective. However, in practice, the manipulator may also be reluctant to lie, i.e., she may have a preference for submitting a vote that does not deviate too much from her true ranking of the candidates. In this paper, we study the complexity of finding a manipulative vote that achieves the manipulator's goal yet is as close as possible to her true preference order. We analyze this problem for three natural notions of closeness, namely, swap distance, footrule distance, and maximum displacement distance, and a variety of voting rules, such as scoring rules, Bucklin, Copeland, and Maximin. For all three distances, we obtain polynomial-time algorithms for all scoring rules and Bucklin and hardness results for Copeland and Maximin.


Stability Via Convexity and LP Duality in OCF Games

AAAI Conferences

The core is a central solution concept in cooperative game theory, and therefore it is important to know under what conditions the core of a game is guaranteed to be non-empty. Two notions that prove to be very useful in this context are Linear Programming (LP) duality and convexity. In this work, we apply these tools to identify games with overlapping coalitions (OCF games) that admit stable outcomes. We focus on three notions of the core defined in (Chalkiadakis et al. 2010) for such games, namely, the conservative core, the refined core and the optimistic core. First, we show that the conservative core of an OCF game is non-empty if and only if the core of a related classic coalitional game is non-empty. This enables us to improve the result of (Chalkiadakis et al. 2010) by giving a strictly weaker sufficient condition for the non-emptiness of the conservative core. We then use LP duality to characterize OCF games with non-empty refined core; as a corollary, we show that the refined core of a game is non-empty as long as the superadditive cover of its characteristic function is convex. Finally, we identify a large class of OCF games that can be shown to have a non-empty optimistic core using an LP based argument.


Computational Aspects of Cooperative Game Theory

Morgan & Claypool Publishers

Our aim in this book is to present a survey of work on the computational aspects of cooperative game theory. We begin by formally defining transferable utility games in characteristic function form, and introducing key solution concepts such as the core and the Shapley value. We then discuss two major issues: identifying compact representations for games, and efficiently computing solution concepts for games. ISBN 9781608456529, 168 pages.


Campaign Management under Approval-Driven Voting Rules

AAAI Conferences

Approval-like voting rules, such as Sincere-Strategy Preference-Based Approval voting (SP-AV), the Bucklin rule (an adaptive variant of k-Approval voting), and the Fallback rule (an adaptive variant of SP-AV) have many desirable properties: for example, they are easy to understand and encourage the candidates to choose electoral platforms that have a broad appeal. In this paper, we investigate both classic and parameterized computational complexity of electoral campaign management under such rules. We focus on two methods that can be used to promote a given candidate: asking voters to move this candidate upwards in their preference order or asking them to change the number of candidates they approve of. We show that finding an optimal campaign management strategy of the first type is easy for both Bucklin and Fallback. In contrast, the second method is computationally hard even if the degree to which we need to affect the votes is small. Nevertheless, we identify a large class of scenarios that admit a fixed-parameter tractable algorithm.


Constrained Coalition Formation

AAAI Conferences

The conventional model of coalition formation considers every possible subset of agents as a potential coalition. However, in many real-world applications, there are inherent constraints on feasible coalitions: for instance, certain agents may be prohibited from being in the same coalition, or the coalition structure may be required to consist of coalitions of the same size. In this paper, we present the first systematic study of constrained coalition formation (CCF). We propose a general framework for this problem, and identify an important class of CCF settings, where the constraints specify which groups of agents should/should not work together. We describe a procedure that transforms such constraints into a structured input that allows coalition formation algorithms to identify, without any redundant computations, all the feasible coalitions. We then use this procedure to develop an algorithm for generating an optimal (welfare-maximizing) constrained coalition structure, and show that it outperforms existing state-of-the-art approaches by several orders of magnitude.


Algorithmic Game Theory and Artificial Intelligence

AI Magazine

We briefly survey the rise of game theory as a topic of study in artificial intelligence, and explain the term algorithmic game theory. Finally, we give short summaries of each of the six articles appearing in this issue.


Algorithmic Game Theory and Artificial Intelligence

AI Magazine

Indeed, game theory now serves as perhaps the main analytical framework in microeconomic theory, as evidenced by its prominent role in economics textbooks (for example, Mas-Colell, Whinston, and Green 1995) and by the many Nobel prizes in economic sciences awarded to prominent game theorists. Artificial intelligence got its start shortly after game theory (McCarthy et al. 1955), and indeed pioneers such as von Neumann and Simon made early contributions to both fields (see, for example, Findler [1988], Simon [1981]). Both game theory and AI draw (nonexclusively) on decision theory (von Neumann and Morgenstern 1947); for example, one prominent view defines artificial intelligence as "the study and construction of rational agents" (Russell and Norvig 2003), and hence takes a decision-theoretic approach when the world is stochastic. However, artificial intelligence spent most of its first 40 years focused on the design and analysis of agents that act in isolation, and hence had little need for game-theoretic analysis. Starting in the mid to late 1990s, game theory became a major topic of study for computer scientists, for at least two main reasons. First, economists began to be interested in systems whose computational properties posed serious barriers to practical use, and hence reached out to computer scientists; notably, this occurred around the study of combinatorial auctions (see, for example, Cramton, Shoham, and Steinberg 2006). Second, the rise of distributed computing in general and the Internet in particular made it increasingly necessary for computer scientists to study settings in which intelligent agents reason about and interact with other agents.


Good Rationalizations of Voting Rules

AAAI Conferences

We explore the relationship between two approaches to rationalizing voting rules: the maximum likelihood estimation (MLE) framework originally suggested by Condorcet and recently studied by Conitzer, Rognlie, and Xia, and the distance rationalizability (DR) framework of Elkind, Faliszewski, and Slinko. The former views voting as an attempt to reconstruct the correct ordering of the candidates given noisy estimates (i.e., votes), while the latter explains voting as search for the nearest consensus outcome. We provide conditions under which an MLE interpretation of a voting rule coincides with its DR interpretation, and classify a number of classic voting rules, such as Kemeny, Plurality, Borda and Single Transferable Vote (STV), according to how well they fit each of these frameworks. The classification we obtain is more precise than the ones that result from using MLE or DR alone: indeed, we show that the MLE approach can be used to guide our search for a more refined notion of distance rationalizability and vice versa.