Goto

Collaborating Authors

 Elkind, Edith


Temporal Fair Division of Indivisible Items

arXiv.org Artificial Intelligence

We study a fair division model where indivisible items arrive sequentially, and must be allocated immediately and irrevocably. Previous work on online fair division has shown impossibility results in achieving approximate envy-freeness under these constraints. In contrast, we consider an informed setting where the algorithm has complete knowledge of future items, and aim to ensure that the cumulative allocation at each round satisfies approximate envy-freeness -- which we define as temporal envy-freeness up to one item (TEF1). We focus on settings where items can be exclusively goods or exclusively chores. For goods, while TEF1 allocations may not always exist, we identify several special cases where they do -- two agents, two item types, generalized binary valuations, unimodal preferences -- and provide polynomial-time algorithms for these cases. We also prove that determining the existence of a TEF1 allocation is NP-hard. For chores, we establish analogous results for the special cases, but present a slightly weaker intractability result. We also establish the incompatibility between TEF1 and Pareto-optimality, with the implication that it is intractable to find a TEF1 allocation that maximizes any $p$-mean welfare, even for two agents.


Generative AI Voting: Fair Collective Choice is Resilient to LLM Biases and Inconsistencies

arXiv.org Artificial Intelligence

Scaling up deliberative and voting participation is a longstanding endeavor -- a cornerstone for direct democracy and legitimate collective choice. Recent breakthroughs in generative artificial intelligence (AI) and large language models (LLMs) provide unprecedented opportunities, but also alerting risks for digital democracy. AI personal assistants can overcome cognitive bandwidth limitations of humans, providing decision support capabilities or even direct AI representation of human voters at large scale. However, the quality of this representation and what underlying biases manifest when delegating collective decision making to LLMs is an alarming and timely challenge to tackle. By rigorously emulating with high realism more than >50K LLM voting personas in 81 real-world voting elections, we show that different LLMs (GPT 3, GPT 3.5, and Llama2) come with biases and significant inconsistencies in complex preferential ballot formats, compared to simpler and more consistent majoritarian elections. Strikingly, fair voting aggregation methods, such as equal shares, prove to be a win-win: fairer voting outcomes for humans with fairer AI representation. This novel underlying relationship proves paramount for democratic resilience in progressives scenarios with low voters turnout and voter fatigue supported by AI representatives: abstained voters are mitigated by recovering highly representative voting outcomes that are fairer. These insights provide remarkable foundations for science, policymakers and citizens in explaining and mitigating AI risks in democratic innovations.


Select to Perfect: Imitating desired behavior from large multi-agent data

arXiv.org Artificial Intelligence

AI agents are commonly trained with large datasets of demonstrations of human behavior. However, not all behaviors are equally safe or desirable. Desired characteristics for an AI agent can be expressed by assigning desirability scores, which we assume are not assigned to individual behaviors but to collective trajectories. For example, in a dataset of vehicle interactions, these scores might relate to the number of incidents that occurred. We first assess the effect of each individual agent's behavior on the collective desirability score, e.g., assessing how likely an agent is to cause incidents. This allows us to selectively imitate agents with a positive effect, e.g., only imitating agents that are unlikely to cause incidents. To enable this, we propose the concept of an agent's Exchange Value, which quantifies an individual agent's contribution to the collective desirability score. The Exchange Value is the expected change in desirability score when substituting the agent for a randomly selected agent. We propose additional methods for estimating Exchange Values from real-world datasets, enabling us to learn desired imitation policies that outperform relevant baselines. Imitating human behaviors from large datasets is a promising technique for achieving human-AI and AI-AI interactions in complex environments (Carroll et al., 2019;, FAIR; He et al., 2023; Shih et al., 2022). However, such large datasets can contain undesirable human behaviors, making direct imitation problematic. Rather than imitating all behaviors, it may be preferable to ensure that AI agents imitate behaviors that align with predefined desirable characteristics. In this work, we assume that desirable characteristics are quantified as desirability scores given for each trajectory in the dataset.


United for Change: Deliberative Coalition Formation to Change the Status Quo

arXiv.org Artificial Intelligence

We study a setting in which a community wishes to identify a strongly supported proposal from a space of alternatives, in order to change the status quo. We describe a deliberation process in which agents dynamically form coalitions around proposals that they prefer over the status quo. We formulate conditions on the space of proposals and on the ways in which coalitions are formed that guarantee deliberation to succeed, that is, to terminate by identifying a proposal with the largest possible support. Our results provide theoretical foundations for the analysis of deliberative processes such as the ones that take place in online systems for democratic deliberation support. Earlier versions of this article have been accepted for presentation at the 35th AAAI Conference on Artificial Intelligence, AAAI-21 [Elkind et al., 2021] and at the 8th International Workshop on Computational Social Choice, COMSOC-21.


Temporal Fairness in Multiwinner Voting

arXiv.org Artificial Intelligence

Multiwinner voting captures a wide variety of settings, from parliamentary elections in democratic systems to product placement in online shopping platforms. There is a large body of work dealing with axiomatic characterizations, computational complexity, and algorithmic analysis of multiwinner voting rules. Although many challenges remain, significant progress has been made in showing existence of fair and representative outcomes as well as efficient algorithmic solutions for many commonly studied settings. However, much of this work focuses on single-shot elections, even though in numerous real-world settings elections are held periodically and repeatedly. Hence, it is imperative to extend the study of multiwinner voting to temporal settings. Recently, there have been several efforts to address this challenge. However, these works are difficult to compare, as they model multi-period voting in very different ways. We propose a unified framework for studying temporal fairness in this domain, drawing connections with various existing bodies of work, and consolidating them within a general framework. We also identify gaps in existing literature, outline multiple opportunities for future work, and put forward a vision for the future of multiwinner voting in temporal settings.


Selecting Representative Bodies: An Axiomatic View

arXiv.org Artificial Intelligence

As the world's democratic institutions are challenged by dissatisfied citizens, political scientists and also computer scientists have proposed and analyzed various (innovative) methods to select representative bodies, a crucial task in every democracy. However, a unified framework to analyze and compare different selection mechanisms is missing, resulting in very few comparative works. To address this gap, we advocate employing concepts and tools from computational social choice in order to devise a model in which different selection mechanisms can be formalized. Such a model would allow for desirable representation axioms to be conceptualized and evaluated. We make the first step in this direction by proposing a unifying mathematical formulation of different selection mechanisms as well as various social-choice-inspired axioms such as proportionality and monotonicity.


Expected Frequency Matrices of Elections: Computation, Geometry, and Preference Learning

arXiv.org Artificial Intelligence

We use the ``map of elections'' approach of Szufa et al. (AAMAS-2020) to analyze several well-known vote distributions. For each of them, we give an explicit formula or an efficient algorithm for computing its frequency matrix, which captures the probability that a given candidate appears in a given position in a sampled vote. We use these matrices to draw the ``skeleton map'' of distributions, evaluate its robustness, and analyze its properties. Finally, we develop a general and unified framework for learning the distribution of real-world preferences using the frequency matrices of established vote distributions.


Democratic Forking: Choosing Sides with Social Choice

arXiv.org Artificial Intelligence

Any community in which membership is optional may eventually break apart, or fork. For example, forks may occur in political parties, business partnerships, social groups, cryptocurrencies, and federated governing bodies. Forking is typically the product of informal social processes or the organized action of an aggrieved minority, and it is not always amicable. Forks usually come at a cost, and can be seen as consequences of collective decisions that destabilize the community. Here, we provide a social choice setting in which agents can report preferences not only over a set of alternatives, but also over the possible forks that may occur in the face of disagreement. We study this social choice setting, concentrating on stability issues and concerns of strategic agent behavior.


Bounds on the Cost of Stabilizing a Cooperative Game

Journal of Artificial Intelligence Research

A key issue in cooperative game theory is coalitional stability, usually captured by the notion of the core---the set of outcomes that are resistant to group deviations. However, some coalitional games have empty cores, and any outcome in such a game is unstable. We investigate the possibility of stabilizing a coalitional game by using subsidies. We consider scenarios where an external party that is interested in having the players work together offers a supplemental payment to the grand coalition, or, more generally, a particular coalition structure. This payment is conditional on players not deviating from this coalition structure, and may be divided among the players in any way they wish. We define the cost of stability as the minimum external payment that stabilizes the game. We provide tight bounds on the cost of stability, both for games where the coalitional values are nonnegative (profit-sharing games) and for games where the coalitional values are nonpositive (cost-sharing games), under natural assumptions on the characteristic function, such as superadditivity, anonymity, or both. We also investigate the relationship between the cost of stability and several variants of the least core. Finally, we study the computational complexity of problems related to the cost of stability, with a focus on weighted voting games.


Cooperative Games With Bounded Dependency Degree

AAAI Conferences

Cooperative games provide a framework to study cooperation among self-interested agents. They offer a number of solution concepts describing how the outcome of the cooperation should be shared among the players. Unfortunately, computational problems associated with many of these solution concepts tend to be intractable---NP-hard or worse. In this paper, we incorporate complexity measures recently proposed by Feige and Izsak (2013), called dependency degree and supermodular degree, into the complexity analysis of coopera- tive games. We show that many computational problems for cooperative games become tractable for games whose dependency degree or supermodular degree are bounded. In particular, we prove that simple games admit efficient algorithms for various solution concepts when the supermodular degree is small; further, we show that computing the Shapley value is always in FPT with respect to the dependency degree. Finally, we observe that, while determining the dependency among players is computationally hard, there are efficient algorithms for special classes of games.