Goto

Collaborating Authors

 Eldeeb, Eslam


Resilient UAV Trajectory Planning via Few-Shot Meta-Offline Reinforcement Learning

arXiv.org Artificial Intelligence

Reinforcement learning (RL) has been a promising essence in future 5G-beyond and 6G systems. Its main advantage lies in its robust model-free decision-making in complex and large-dimension wireless environments. However, most existing RL frameworks rely on online interaction with the environment, which might not be feasible due to safety and cost concerns. Another problem with online RL is the lack of scalability of the designed algorithm with dynamic or new environments. This work proposes a novel, resilient, few-shot meta-offline RL algorithm combining offline RL using conservative Q-learning (CQL) and meta-learning using model-agnostic meta-learning (MAML). The proposed algorithm can train RL models using static offline datasets without any online interaction with the environments. In addition, with the aid of MAML, the proposed model can be scaled up to new unseen environments. We showcase the proposed algorithm for optimizing an unmanned aerial vehicle (UAV) 's trajectory and scheduling policy to minimize the age-of-information (AoI) and transmission power of limited-power devices. Numerical results show that the proposed few-shot meta-offline RL algorithm converges faster than baseline schemes, such as deep Q-networks and CQL. In addition, it is the only algorithm that can achieve optimal joint AoI and transmission power using an offline dataset with few shots of data points and is resilient to network failures due to unprecedented environmental changes.


Multi-Agent Meta-Offline Reinforcement Learning for Timely UAV Path Planning and Data Collection

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) has been widely adopted in high-performance computing and complex data-driven decision-making in the wireless domain. However, conventional MARL schemes face many obstacles in real-world scenarios. First, most MARL algorithms are online, which might be unsafe and impractical. Second, MARL algorithms are environment-specific, meaning network configuration changes require model retraining. This letter proposes a novel meta-offline MARL algorithm that combines conservative Q-learning (CQL) and model agnostic meta-learning (MAML). CQL enables offline training by leveraging pre-collected datasets, while MAML ensures scalability and adaptability to dynamic network configurations and objectives. We propose two algorithm variants: independent training (M-I-MARL) and centralized training decentralized execution (M-CTDE-MARL). Simulation results show that the proposed algorithm outperforms conventional schemes, especially the CTDE approach that achieves 50 % faster convergence in dynamic scenarios than the benchmarks. The proposed framework enhances scalability, robustness, and adaptability in wireless communication systems by optimizing UAV trajectories and scheduling policies.


Age and Power Minimization via Meta-Deep Reinforcement Learning in UAV Networks

arXiv.org Artificial Intelligence

Age-of-information (AoI) and transmission power are crucial performance metrics in low energy wireless networks, where information freshness is of paramount importance. This study examines a power-limited internet of things (IoT) network supported by a flying unmanned aerial vehicle(UAV) that collects data. Our aim is to optimize the UAV flight trajectory and scheduling policy to minimize a varying AoI and transmission power combination. To tackle this variation, this paper proposes a meta-deep reinforcement learning (RL) approach that integrates deep Q-networks (DQNs) with model-agnostic meta-learning (MAML). DQNs determine optimal UAV decisions, while MAML enables scalability across varying objective functions. Numerical results indicate that the proposed algorithm converges faster and adapts to new objectives more effectively than traditional deep RL methods, achieving minimal AoI and transmission power overall.


An Offline Multi-Agent Reinforcement Learning Framework for Radio Resource Management

arXiv.org Artificial Intelligence

Offline multi-agent reinforcement learning (MARL) addresses key limitations of online MARL, such as safety concerns, expensive data collection, extended training intervals, and high signaling overhead caused by online interactions with the environment. In this work, we propose an offline MARL algorithm for radio resource management (RRM), focusing on optimizing scheduling policies for multiple access points (APs) to jointly maximize the sum and tail rates of user equipment (UEs). We evaluate three training paradigms: centralized, independent, and centralized training with decentralized execution (CTDE). Our simulation results demonstrate that the proposed offline MARL framework outperforms conventional baseline approaches, achieving over a 15\% improvement in a weighted combination of sum and tail rates. Additionally, the CTDE framework strikes an effective balance, reducing the computational complexity of centralized methods while addressing the inefficiencies of independent training. These results underscore the potential of offline MARL to deliver scalable, robust, and efficient solutions for resource management in dynamic wireless networks.


MetaGraphLoc: A Graph-based Meta-learning Scheme for Indoor Localization via Sensor Fusion

arXiv.org Artificial Intelligence

Accurate indoor localization remains challenging due to variations in wireless signal environments and limited data availability. This paper introduces MetaGraphLoc, a novel system leveraging sensor fusion, graph neural networks (GNNs), and meta-learning to overcome these limitations. MetaGraphLoc integrates received signal strength indicator measurements with inertial measurement unit data to enhance localization accuracy. Our proposed GNN architecture, featuring dynamic edge construction (DEC), captures the spatial relationships between access points and underlying data patterns. MetaGraphLoc employs a meta-learning framework to adapt the GNN model to new environments with minimal data collection, significantly reducing calibration efforts. Extensive evaluations demonstrate the effectiveness of MetaGraphLoc. Data fusion reduces localization error by 15.92%, underscoring its importance. The GNN with DEC outperforms traditional deep neural networks by up to 30.89%, considering accuracy. Furthermore, the meta-learning approach enables efficient adaptation to new environments, minimizing data collection requirements. These advancements position MetaGraphLoc as a promising solution for indoor localization, paving the way for improved navigation and location-based services in the ever-evolving Internet of Things networks.


An Analysis of Minimum Error Entropy Loss Functions in Wireless Communications

arXiv.org Artificial Intelligence

This paper introduces the minimum error entropy (MEE) criterion as an advanced information-theoretic loss function tailored for deep learning applications in wireless communications. The MEE criterion leverages higher-order statistical properties, offering robustness in noisy scenarios like Rayleigh fading and impulsive interference. In addition, we propose a less computationally complex version of the MEE function to enhance practical usability in wireless communications. The method is evaluated through simulations on two critical applications: over-the-air regression and indoor localization. Results indicate that the MEE criterion outperforms conventional loss functions, such as mean squared error (MSE) and mean absolute error (MAE), achieving significant performance improvements in terms of accuracy, over $20 \%$ gain over traditional methods, and convergence speed across various channel conditions. This work establishes MEE as a promising alternative for wireless communication tasks in deep learning models, enabling better resilience and adaptability.


Offline and Distributional Reinforcement Learning for Radio Resource Management

arXiv.org Artificial Intelligence

Reinforcement learning (RL) has proved to have a promising role in future intelligent wireless networks. Online RL has been adopted for radio resource management (RRM), taking over traditional schemes. However, due to its reliance on online interaction with the environment, its role becomes limited in practical, real-world problems where online interaction is not feasible. In addition, traditional RL stands short in front of the uncertainties and risks in real-world stochastic environments. In this manner, we propose an offline and distributional RL scheme for the RRM problem, enabling offline training using a static dataset without any interaction with the environment and considering the sources of uncertainties using the distributions of the return. Simulation results demonstrate that the proposed scheme outperforms conventional resource management models. In addition, it is the only scheme that surpasses online RL and achieves a $16 \%$ gain over online RL.


Semantic Meta-Split Learning: A TinyML Scheme for Few-Shot Wireless Image Classification

arXiv.org Artificial Intelligence

Semantic and goal-oriented (SGO) communication is an emerging technology that only transmits significant information for a given task. Semantic communication encounters many challenges, such as computational complexity at end users, availability of data, and privacy-preserving. This work presents a TinyML-based semantic communication framework for few-shot wireless image classification that integrates split-learning and meta-learning. We exploit split-learning to limit the computations performed by the end-users while ensuring privacy-preserving. In addition, meta-learning overcomes data availability concerns and speeds up training by utilizing similarly trained tasks. The proposed algorithm is tested using a data set of images of hand-written letters. In addition, we present an uncertainty analysis of the predictions using conformal prediction (CP) techniques. Simulation results show that the proposed Semantic-MSL outperforms conventional schemes by achieving 20 % gain on classification accuracy using fewer data points, yet less training energy consumption.


A Multi-Task Oriented Semantic Communication Framework for Autonomous Vehicles

arXiv.org Artificial Intelligence

Task-oriented semantic communication is an emerging technology that transmits only the relevant semantics of a message instead of the whole message to achieve a specific task. It reduces latency, compresses the data, and is more robust in low SNR scenarios. This work presents a multi-task-oriented semantic communication framework for connected and autonomous vehicles (CAVs). We propose a convolutional autoencoder (CAE) that performs the semantic encoding of the road traffic signs. These encoded images are then transmitted from one CAV to another CAV through satellite in challenging weather conditions where visibility is impaired. In addition, we propose task-oriented semantic decoders for image reconstruction and classification tasks. Simulation results show that the proposed framework outperforms the conventional schemes, such as QAM-16, regarding the reconstructed image's similarity and the classification's accuracy. In addition, it can save up to 89 % of the bandwidth by sending fewer bits.


Conservative and Risk-Aware Offline Multi-Agent Reinforcement Learning for Digital Twins

arXiv.org Artificial Intelligence

Digital twin (DT) platforms are increasingly regarded as a promising technology for controlling, optimizing, and monitoring complex engineering systems such as next-generation wireless networks. An important challenge in adopting DT solutions is their reliance on data collected offline, lacking direct access to the physical environment. This limitation is particularly severe in multi-agent systems, for which conventional multi-agent reinforcement (MARL) requires online interactions with the environment. A direct application of online MARL schemes to an offline setting would generally fail due to the epistemic uncertainty entailed by the limited availability of data. In this work, we propose an offline MARL scheme for DT-based wireless networks that integrates distributional RL and conservative Q-learning to address the environment's inherent aleatoric uncertainty and the epistemic uncertainty arising from limited data. To further exploit the offline data, we adapt the proposed scheme to the centralized training decentralized execution framework, allowing joint training of the agents' policies. The proposed MARL scheme, referred to as multi-agent conservative quantile regression (MA-CQR) addresses general risk-sensitive design criteria and is applied to the trajectory planning problem in drone networks, showcasing its advantages.