Duh, Kevin
A Survey of Vision-Language Pre-training from the Lens of Multimodal Machine Translation
Gwinnup, Jeremy, Duh, Kevin
Large language models such as BERT and the GPT series started a paradigm shift that calls for building general-purpose models via pre-training on large datasets, followed by fine-tuning on task-specific datasets. There is now a plethora of large pre-trained models for Natural Language Processing and Computer Vision. Recently, we have seen rapid developments in the joint Vision-Language space as well, where pre-trained models such as CLIP (Radford et al., 2021) have demonstrated improvements in downstream tasks like image captioning and visual question answering. However, surprisingly there is comparatively little work on exploring these models for the task of multimodal machine translation, where the goal is to leverage image/video modality in text-to-text translation. To fill this gap, this paper surveys the landscape of language-and-vision pre-training from the lens of multimodal machine translation. We summarize the common architectures, pre-training objectives, and datasets from literature and conjecture what further is needed to make progress on multimodal machine translation.
Exploring Representational Disparities Between Multilingual and Bilingual Translation Models
Verma, Neha, Murray, Kenton, Duh, Kevin
Multilingual machine translation has proven immensely useful for low-resource and zero-shot language pairs. However, language pairs in multilingual models sometimes see worse performance than in bilingual models, especially when translating in a one-to-many setting. To understand why, we examine the geometric differences in the representations from bilingual models versus those from one-to-many multilingual models. Specifically, we evaluate the isotropy of the representations, to measure how well they utilize the dimensions in their underlying vector space. Using the same evaluation data in both models, we find that multilingual model decoder representations tend to be less isotropic than bilingual model decoder representations. Additionally, we show that much of the anisotropy in multilingual decoder representations can be attributed to modeling language-specific information, therefore limiting remaining representational capacity.
In-context Learning as Maintaining Coherency: A Study of On-the-fly Machine Translation Using Large Language Models
Sia, Suzanna, Duh, Kevin
The phenomena of in-context learning has typically been thought of as "learning from examples". In this work which focuses on Machine Translation, we present a perspective of in-context learning as the desired generation task maintaining coherency with its context, i.e., the prompt examples. We first investigate randomly sampled prompts across 4 domains, and find that translation performance improves when shown in-domain prompts. Next, we investigate coherency for the in-domain setting, which uses prompt examples from a moving window. We study this with respect to other factors that have previously been identified in the literature such as length, surface similarity and sentence embedding similarity. Our results across 3 models (GPTNeo2.7B, Bloom3B, XGLM2.9B), and three translation directions (\texttt{en}$\rightarrow$\{\texttt{pt, de, fr}\}) suggest that the long-term coherency of the prompts and the test sentence is a good indicator of downstream translation performance. In doing so, we demonstrate the efficacy of In-context Machine Translation for on-the-fly adaptation.
Self-Guided Curriculum Learning for Neural Machine Translation
Zhou, Lei, Ding, Liang, Duh, Kevin, Sasano, Ryohei, Takeda, Koichi
In the field of machine learning, the well-trained model is assumed to be able to recover the training labels, i.e. the synthetic labels predicted by the model should be as close to the ground-truth labels as possible. Inspired by this, we propose a self-guided curriculum strategy to encourage the learning of neural machine translation (NMT) models to follow the above recovery criterion, where we cast the recovery degree of each training example as its learning difficulty. Specifically, we adopt the sentence level BLEU score as the proxy of recovery degree. Different from existing curricula relying on linguistic prior knowledge or third-party language models, our chosen learning difficulty is more suitable to measure the degree of knowledge mastery of the NMT models. Experiments on translation benchmarks, including WMT14 English$\Rightarrow$German and WMT17 Chinese$\Rightarrow$English, demonstrate that our approach can consistently improve translation performance against strong baseline Transformer.
Membership Inference Attacks on Sequence-to-Sequence Models
Hisamoto, Sorami, Post, Matt, Duh, Kevin
Data privacy is an important issue for "machine learning as a service" providers. We focus on the problem of membership inference attacks: given a data sample and black-box access to a model's API, determine whether the sample existed in the model's training data. Our contribution is an investigation of this problem in the context of sequence-to-sequence models, which are important in applications such as machine translation and video captioning. We define the membership inference problem for sequence generation, provide an open dataset based on state-of-the-art machine translation models, and report initial results on whether these models leak private information against several kinds of membership inference attacks.
Robsut Wrod Reocginiton via Semi-Character Recurrent Neural Network
Sakaguchi, Keisuke (Johns Hopkins University) | Duh, Kevin (Johns Hopkins University) | Post, Matt (Johns Hopkins University) | Durme, Benjamin Van (Johns Hopkins University)
Language processing mechanism by humans is generally more robust than computers. The Cmabrigde Uinervtisy (Cambridge University) effect from the psycholinguistics literature has demonstrated such a robust word processing mechanism, where jumbled words (e.g. Cmabrigde / Cambridge) are recognized with little cost. On the other hand, computational models for word recognition (e.g. spelling checkers) perform poorly on data with such noise. Inspired by the findings from the Cmabrigde Uinervtisy effect, we propose a word recognition model based on a semi-character level recurrent neural network (scRNN). In our experiments, we demonstrate that scRNN has significantly more robust performance in word spelling correction (i.e. word recognition) compared to existing spelling checkers and character-based convolutional neural network. Furthermore, we demonstrate that the model is cognitively plausible by replicating a psycholinguistics experiment about human reading difficulty using our model.
DyNet: The Dynamic Neural Network Toolkit
Neubig, Graham, Dyer, Chris, Goldberg, Yoav, Matthews, Austin, Ammar, Waleed, Anastasopoulos, Antonios, Ballesteros, Miguel, Chiang, David, Clothiaux, Daniel, Cohn, Trevor, Duh, Kevin, Faruqui, Manaal, Gan, Cynthia, Garrette, Dan, Ji, Yangfeng, Kong, Lingpeng, Kuncoro, Adhiguna, Kumar, Gaurav, Malaviya, Chaitanya, Michel, Paul, Oda, Yusuke, Richardson, Matthew, Saphra, Naomi, Swayamdipta, Swabha, Yin, Pengcheng
We describe DyNet, a toolkit for implementing neural network models based on dynamic declaration of network structure. In the static declaration strategy that is used in toolkits like Theano, CNTK, and TensorFlow, the user first defines a computation graph (a symbolic representation of the computation), and then examples are fed into an engine that executes this computation and computes its derivatives. In DyNet's dynamic declaration strategy, computation graph construction is mostly transparent, being implicitly constructed by executing procedural code that computes the network outputs, and the user is free to use different network structures for each input. Dynamic declaration thus facilitates the implementation of more complicated network architectures, and DyNet is specifically designed to allow users to implement their models in a way that is idiomatic in their preferred programming language (C++ or Python). One challenge with dynamic declaration is that because the symbolic computation graph is defined anew for every training example, its construction must have low overhead. To achieve this, DyNet has an optimized C++ backend and lightweight graph representation. Experiments show that DyNet's speeds are faster than or comparable with static declaration toolkits, and significantly faster than Chainer, another dynamic declaration toolkit. DyNet is released open-source under the Apache 2.0 license and available at http://github.com/clab/dynet.
Non-Linear Similarity Learning for Compositionality
Tsubaki, Masashi (Nara Institute of Science and Technology) | Duh, Kevin (Johns Hopkins University) | Shimbo, Masashi (Nara Institute of Science and Technology) | Matsumoto, Yuji (Nara Institute of Science and Technology)
Many NLP applications rely on the existence ofsimilarity measures over text data.Although word vector space modelsprovide good similarity measures between words,phrasal and sentential similarities derived from compositionof individual words remain as a difficult problem.In this paper, we propose a new method of ofnon-linear similarity learning for semantic compositionality.In this method, word representations are learnedthrough the similarity learning of sentencesin a high-dimensional space with kernel functions.On the task of predicting the semantic similarity oftwo sentences (SemEval 2014, Task 1),our method outperforms linear baselines,feature engineering approaches,recursive neural networks,and achieve competitive results with long short-term memory models.