Goto

Collaborating Authors

 Duan, Peibo


A Distillation-based Future-aware Graph Neural Network for Stock Trend Prediction

arXiv.org Artificial Intelligence

Stock trend prediction involves forecasting the future price movements by analyzing historical data and various market indicators. With the advancement of machine learning, graph neural networks (GNNs) have been extensively employed in stock prediction due to their powerful capability to capture spatiotemporal dependencies of stocks. However, despite the efforts of various GNN stock predictors to enhance predictive performance, the improvements remain limited, as they focus solely on analyzing historical spatiotemporal dependencies, overlooking the correlation between historical and future patterns. In this study, we propose a novel distillation-based future-aware GNN framework (DishFT-GNN) for stock trend prediction. Specifically, DishFT-GNN trains a teacher model and a student model, iteratively. The teacher model learns to capture the correlation between distribution shifts of historical and future data, which is then utilized as intermediate supervision to guide the student model to learn future-aware spatiotemporal embeddings for accurate prediction. Through extensive experiments on two real-world datasets, we verify the state-of-the-art performance of DishFT-GNN.


AI-Driven Day-to-Day Route Choice

arXiv.org Artificial Intelligence

Understanding individual travel behaviors is critical for developing efficient and sustainable transportation systems. Travel behavioral analysis aims to capture the decision-making process of individual travel execution, including travel route choice, travel mode choice, departure time choice, and trip purpose. Among these choices, modeling route choice not only helps analyze and understand travelers' behaviors, but also constitutes the essential part of traffic assignment methods [1]. Specifically, it enables the evaluation of travelers' perceptions of route characteristics, the forecasting of behavior in hypothetical scenarios, the prediction of future traffic dynamics on transportation networks, and the understanding of travelers' responses to travel information. Real-world route choice is complex because of the inherent difficulties in accurately representing human behavior, travelers' limited knowledge of network composition, uncertainties in perceptions of route characteristics, and the lack of precise information about travelers' preferences [1]. To overcome these limitations, DTD traffic dynamics have attracted significant attention since they focus on drivers' dynamic shifts in route choices and the evolution of traffic flow over time, rather than merely static equilibrium states. DTD models are flexible to incorporate diverse behavioral rules such as forecasting [2, 3], bounded rationality [4, 5], decision-making based on prospects [6, 7], marginal utility effects [8, 9], and social interactions [10]. Despite these advantages identified in [11] and [12], DTD models still struggle to accurately reflect the observed fluctuations in traffic dynamics, particularly the persistent deviations around User Equilibrium (UE) noted in empirical studies [13, 14, 15]. To better understand traffic dynamics, Agent-Based Modeling (ABM) offers a promising alternative.


AGHINT: Attribute-Guided Representation Learning on Heterogeneous Information Networks with Transformer

arXiv.org Artificial Intelligence

Recently, heterogeneous graph neural networks (HGNNs) have achieved impressive success in representation learning by capturing long-range dependencies and heterogeneity at the node level. However, few existing studies have delved into the utilization of node attributes in heterogeneous information networks (HINs). In this paper, we investigate the impact of inter-node attribute disparities on HGNNs performance within the benchmark task, i.e., node classification, and empirically find that typical models exhibit significant performance decline when classifying nodes whose attributes markedly differ from their neighbors. To alleviate this issue, we propose a novel Attribute-Guided heterogeneous Information Networks representation learning model with Transformer (AGHINT), which allows a more effective aggregation of neighbor node information under the guidance of attributes. Specifically, AGHINT transcends the constraints of the original graph structure by directly integrating higher-order similar neighbor features into the learning process and modifies the message-passing mechanism between nodes based on their attribute disparities. Extensive experimental results on three real-world heterogeneous graph benchmarks with target node attributes demonstrate that AGHINT outperforms the state-of-the-art.


NurViD: A Large Expert-Level Video Database for Nursing Procedure Activity Understanding

arXiv.org Artificial Intelligence

The application of deep learning to nursing procedure activity understanding has the potential to greatly enhance the quality and safety of nurse-patient interactions. By utilizing the technique, we can facilitate training and education, improve quality control, and enable operational compliance monitoring. However, the development of automatic recognition systems in this field is currently hindered by the scarcity of appropriately labeled datasets. The existing video datasets pose several limitations: 1) these datasets are small-scale in size to support comprehensive investigations of nursing activity; 2) they primarily focus on single procedures, lacking expert-level annotations for various nursing procedures and action steps; and 3) they lack temporally localized annotations, which prevents the effective localization of targeted actions within longer video sequences. To mitigate these limitations, we propose NurViD, a large video dataset with expert-level annotation for nursing procedure activity understanding. NurViD consists of over 1.5k videos totaling 144 hours, making it approximately four times longer than the existing largest nursing activity datasets. Notably, it encompasses 51 distinct nursing procedures and 177 action steps, providing a much more comprehensive coverage compared to existing datasets that primarily focus on limited procedures. To evaluate the efficacy of current deep learning methods on nursing activity understanding, we establish three benchmarks on NurViD: procedure recognition on untrimmed videos, procedure and action recognition on trimmed videos, and action detection. Our benchmark and code will be available at \url{https://github.com/minghu0830/NurViD-benchmark}.


CityNet: A Multi-city Multi-modal Dataset for Smart City Applications

arXiv.org Artificial Intelligence

Data-driven approaches have been applied to many problems in urban computing. However, in the research community, such approaches are commonly studied under data from limited sources, and are thus unable to characterize the complexity of urban data coming from multiple entities and the correlations among them. Consequently, an inclusive and multifaceted dataset is necessary to facilitate more extensive studies on urban computing. In this paper, we present CityNet, a multi-modal urban dataset containing data from 7 cities, each of which coming from 3 data sources. We first present the generation process of CityNet as well as its basic properties. In addition, to facilitate the use of CityNet, we carry out extensive machine learning experiments, including spatio-temporal predictions, transfer learning, and reinforcement learning. The experimental results not only provide benchmarks for a wide range of tasks and methods, but also uncover internal correlations among cities and tasks within CityNet that, with adequate leverage, can improve performances on various tasks. With the benchmarking results and the correlations uncovered, we believe that CityNet can contribute to the field of urban computing by supporting research on many advanced topics.