Goto

Collaborating Authors

 Ding, Wenhao


Surprise Potential as a Measure of Interactivity in Driving Scenarios

arXiv.org Artificial Intelligence

Validating the safety and performance of an autonomous vehicle (AV) requires benchmarking on real-world driving logs. However, typical driving logs contain mostly uneventful scenarios with minimal interactions between road users. Identifying interactive scenarios in real-world driving logs enables the curation of datasets that amplify critical signals and provide a more accurate assessment of an AV's performance. In this paper, we present a novel metric that identifies interactive scenarios by measuring an AV's surprise potential on others. First, we identify three dimensions of the design space to describe a family of surprise potential measures. Second, we exhaustively evaluate and compare different instantiations of the surprise potential measure within this design space on the nuScenes dataset. To determine how well a surprise potential measure correctly identifies an interactive scenario, we use a reward model learned from human preferences to assess alignment with human intuition. Our proposed surprise potential, arising from this exhaustive comparative study, achieves a correlation of more than 0.82 with the human-aligned reward function, outperforming existing approaches. Lastly, we validate motion planners on curated interactive scenarios to demonstrate downstream applications.


Closed-Loop Supervised Fine-Tuning of Tokenized Traffic Models

arXiv.org Artificial Intelligence

Traffic simulation aims to learn a policy for traffic agents that, when unrolled in closed-loop, faithfully recovers the joint distribution of trajectories observed in the real world. Inspired by large language models, tokenized multi-agent policies have recently become the state-of-the-art in traffic simulation. However, they are typically trained through open-loop behavior cloning, and thus suffer from covariate shift when executed in closed-loop during simulation. In this work, we present Closest Among Top-K (CAT-K) rollouts, a simple yet effective closed-loop fine-tuning strategy to mitigate covariate shift. CAT-K fine-tuning only requires existing trajectory data, without reinforcement learning or generative adversarial imitation. Concretely, CAT-K fine-tuning enables a small 7M-parameter tokenized traffic simulation policy to outperform a 102M-parameter model from the same model family, achieving the top spot on the Waymo Sim Agent Challenge leaderboard at the time of submission. The code is available at https://github.com/NVlabs/catk.


BECAUSE: Bilinear Causal Representation for Generalizable Offline Model-based Reinforcement Learning

arXiv.org Artificial Intelligence

Offline model-based reinforcement learning (MBRL) enhances data efficiency by utilizing pre-collected datasets to learn models and policies, especially in scenarios where exploration is costly or infeasible. Nevertheless, its performance often suffers from the objective mismatch between model and policy learning, resulting in inferior performance despite accurate model predictions. This paper first identifies the primary source of this mismatch comes from the underlying confounders present in offline data for MBRL. Subsequently, we introduce BilinEar CAUSal rEpresentation (BECAUSE), an algorithm to capture causal representation for both states and actions to reduce the influence of the distribution shift, thus mitigating the objective mismatch problem. Comprehensive evaluations on 18 tasks that vary in data quality and environment context demonstrate the superior performance of BECAUSE over existing offline RL algorithms. We show the generalizability and robustness of BECAUSE under fewer samples or larger numbers of confounders. Additionally, we offer theoretical analysis of BECAUSE to prove its error bound and sample efficiency when integrating causal representation into offline MBRL.


CaDRE: Controllable and Diverse Generation of Safety-Critical Driving Scenarios using Real-World Trajectories

arXiv.org Artificial Intelligence

Simulation is an indispensable tool in the development and testing of autonomous vehicles (AVs), offering an efficient and safe alternative to road testing by allowing the exploration of a wide range of scenarios. Despite its advantages, a significant challenge within simulation-based testing is the generation of safety-critical scenarios, which are essential to ensure that AVs can handle rare but potentially fatal situations. This paper addresses this challenge by introducing a novel generative framework, CaDRE, which is specifically designed for generating diverse and controllable safety-critical scenarios using real-world trajectories. Our approach optimizes for both the quality and diversity of scenarios by employing a unique formulation and algorithm that integrates real-world data, domain knowledge, and black-box optimization techniques. We validate the effectiveness of our framework through extensive testing in three representative types of traffic scenarios. The results demonstrate superior performance in generating diverse and high-quality scenarios with greater sample efficiency than existing reinforcement learning and sampling-based methods.


RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios

arXiv.org Artificial Intelligence

Simulation plays a crucial role in the development of autonomous vehicles (AVs) due to the potential risks associated with real-world testing. Although significant progress has been made in the visual aspects of simulators, generating complex behavior among agents remains a formidable challenge. It is not only imperative to ensure realism in the scenarios generated but also essential to incorporate preferences and conditions to facilitate controllable generation for AV training and evaluation. Traditional methods, mainly relying on memorizing the distribution of training datasets, often fall short in generating unseen scenarios. Inspired by the success of retrieval augmented generation in large language models, we present RealGen, a novel retrieval-based in-context learning framework for traffic scenario generation. RealGen synthesizes new scenarios by combining behaviors from multiple retrieved examples in a gradient-free way, which may originate from templates or tagged scenarios. This in-context learning framework endows versatile generative capabilities, including the ability to edit scenarios, compose various behaviors, and produce critical scenarios. Evaluations show that RealGen offers considerable flexibility and controllability, marking a new direction in the field of controllable traffic scenario generation. Check our project website for more information: https://realgen.github.io.


Safety-aware Causal Representation for Trustworthy Reinforcement Learning in Autonomous Driving

arXiv.org Artificial Intelligence

In the domain of autonomous driving, the Learning from Demonstration (LfD) paradigm has exhibited notable efficacy in addressing sequential decision-making problems. However, consistently achieving safety in varying traffic contexts, especially in safety-critical scenarios, poses a significant challenge due to the long-tailed and unforeseen scenarios absent from offline datasets. In this paper, we introduce the saFety-aware strUctured Scenario representatION (FUSION), a pioneering methodology conceived to facilitate the learning of an adaptive end-to-end driving policy by leveraging structured scenario information. FUSION capitalizes on the causal relationships between decomposed reward, cost, state, and action space, constructing a framework for structured sequential reasoning under dynamic traffic environments. We conduct rigorous evaluations in two typical real-world settings of distribution shift in autonomous vehicles, demonstrating the good balance between safety cost and utility reward of FUSION compared to contemporary state-of-the-art safety-aware LfD baselines. Empirical evidence under diverse driving scenarios attests that FUSION significantly enhances the safety and generalizability of autonomous driving agents, even in the face of challenging and unseen environments. Furthermore, our ablation studies reveal noticeable improvements in the integration of causal representation into the safe offline RL problem.


Seeing is not Believing: Robust Reinforcement Learning against Spurious Correlation

arXiv.org Artificial Intelligence

Robustness has been extensively studied in reinforcement learning (RL) to handle various forms of uncertainty such as random perturbations, rare events, and malicious attacks. In this work, we consider one critical type of robustness against spurious correlation, where different portions of the state do not have correlations induced by unobserved confounders. These spurious correlations are ubiquitous in real-world tasks, for instance, a self-driving car usually observes heavy traffic in the daytime and light traffic at night due to unobservable human activity. A model that learns such useless or even harmful correlation could catastrophically fail when the confounder in the test case deviates from the training one. Although motivated, enabling robustness against spurious correlation poses significant challenges since the uncertainty set, shaped by the unobserved confounder and causal structure, is difficult to characterize and identify. Existing robust algorithms that assume simple and unstructured uncertainty sets are therefore inadequate to address this challenge. To solve this issue, we propose Robust State-Confounded Markov Decision Processes (RSC-MDPs) and theoretically demonstrate its superiority in avoiding learning spurious correlations compared with other robust RL counterparts. We also design an empirical algorithm to learn the robust optimal policy for RSC-MDPs, which outperforms all baselines in eight realistic self-driving and manipulation tasks.


What Went Wrong? Closing the Sim-to-Real Gap via Differentiable Causal Discovery

arXiv.org Artificial Intelligence

Training control policies in simulation is more appealing than on real robots directly, as it allows for exploring diverse states in an efficient manner. Yet, robot simulators inevitably exhibit disparities from the real-world \rebut{dynamics}, yielding inaccuracies that manifest as the dynamical simulation-to-reality (sim-to-real) gap. Existing literature has proposed to close this gap by actively modifying specific simulator parameters to align the simulated data with real-world observations. However, the set of tunable parameters is usually manually selected to reduce the search space in a case-by-case manner, which is hard to scale up for complex systems and requires extensive domain knowledge. To address the scalability issue and automate the parameter-tuning process, we introduce COMPASS, which aligns the simulator with the real world by discovering the causal relationship between the environment parameters and the sim-to-real gap. Concretely, our method learns a differentiable mapping from the environment parameters to the differences between simulated and real-world robot-object trajectories. This mapping is governed by a simultaneously learned causal graph to help prune the search space of parameters, provide better interpretability, and improve generalization on unseen parameters. We perform experiments to achieve both sim-to-sim and sim-to-real transfer, and show that our method has significant improvements in trajectory alignment and task success rate over strong baselines in several challenging manipulation tasks.


Your Room is not Private: Gradient Inversion Attack on Reinforcement Learning

arXiv.org Artificial Intelligence

The prominence of embodied Artificial Intelligence (AI), which empowers robots to navigate, perceive, and engage within virtual environments, has attracted significant attention, owing to the remarkable advancements in computer vision and large language models. Privacy emerges as a pivotal concern within the realm of embodied AI, as the robot accesses substantial personal information. However, the issue of privacy leakage in embodied AI tasks, particularly in relation to reinforcement learning algorithms, has not received adequate consideration in research. This paper aims to address this gap by proposing an attack on the value-based algorithm and the gradient-based algorithm, utilizing gradient inversion to reconstruct states, actions, and supervision signals. The choice of using gradients for the attack is motivated by the fact that commonly employed federated learning techniques solely utilize gradients computed based on private user data to optimize models, without storing or transmitting the data to public servers. Nevertheless, these gradients contain sufficient information to potentially expose private data. To validate our approach, we conduct experiments on the AI2THOR simulator and evaluate our algorithm on active perception, a prevalent task in embodied AI. The experimental results demonstrate the effectiveness of our method in successfully reconstructing all information from the data across 120 room layouts.


Solving Coupled Differential Equation Groups Using PINO-CDE

arXiv.org Artificial Intelligence

As a fundamental mathmatical tool in many engineering disciplines, coupled differential equation groups are being widely used to model complex structures containing multiple physical quantities. Engineers constantly adjust structural parameters at the design stage, which requires a highly efficient solver. The rise of deep learning technologies has offered new perspectives on this task. Unfortunately, existing black-box models suffer from poor accuracy and robustness, while the advanced methodologies of single-output operator regression cannot deal with multiple quantities simultaneously. To address these challenges, we propose PINO-CDE, a deep learning framework for solving coupled differential equation groups (CDEs) along with an equation normalization algorithm for performance enhancing. Based on the theory of physics-informed neural operator (PINO), PINO-CDE uses a single network for all quantities in a CDEs, instead of training dozens, or even hundreds of networks as in the existing literature. We demonstrate the flexibility and feasibility of PINO-CDE for one toy example and two engineering applications: vehicle-track coupled dynamics (VTCD) and reliability assessment for a four-storey building (uncertainty propagation). The performance of VTCD indicates that PINO-CDE outperforms existing software and deep learning-based methods in terms of efficiency and precision, respectively. For the uncertainty propagation task, PINO-CDE provides higher-resolution results in less than a quarter of the time incurred when using the probability density evolution method (PDEM). This framework integrates engineering dynamics and deep learning technologies and may reveal a new concept for CDEs solving and uncertainty propagation.