Goto

Collaborating Authors

 Ding, Liang


Self-Guided Curriculum Learning for Neural Machine Translation

arXiv.org Artificial Intelligence

In the field of machine learning, the well-trained model is assumed to be able to recover the training labels, i.e. the synthetic labels predicted by the model should be as close to the ground-truth labels as possible. Inspired by this, we propose a self-guided curriculum strategy to encourage the learning of neural machine translation (NMT) models to follow the above recovery criterion, where we cast the recovery degree of each training example as its learning difficulty. Specifically, we adopt the sentence level BLEU score as the proxy of recovery degree. Different from existing curricula relying on linguistic prior knowledge or third-party language models, our chosen learning difficulty is more suitable to measure the degree of knowledge mastery of the NMT models. Experiments on translation benchmarks, including WMT14 English$\Rightarrow$German and WMT17 Chinese$\Rightarrow$English, demonstrate that our approach can consistently improve translation performance against strong baseline Transformer.


Bridging the Gap Between Clean Data Training and Real-World Inference for Spoken Language Understanding

arXiv.org Artificial Intelligence

Spoken language understanding (SLU) system usually consists of various pipeline components, where each component heavily relies on the results of its upstream ones. For example, Intent detection (ID), and slot filling (SF) require its upstream automatic speech recognition (ASR) to transform the voice into text. In this case, the upstream perturbations, e.g. ASR errors, environmental noise and careless user speaking, will propagate to the ID and SF models, thus deteriorating the system performance. Therefore, the well-performing SF and ID models are expected to be noise resistant to some extent. However, existing models are trained on clean data, which causes a \textit{gap between clean data training and real-world inference.} To bridge the gap, we propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space. Meanwhile, we design a denoising generation model to reduce the impact of the low-quality samples. Experiments on the widely-used dataset, i.e. Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment. The source code will be released.


Towards Efficiently Diversifying Dialogue Generation via Embedding Augmentation

arXiv.org Artificial Intelligence

Dialogue generation models face the challenge of producing generic and repetitive responses. Unlike previous augmentation methods that mostly focus on token manipulation and ignore the essential variety within a single sample using hard labels, we propose to promote the generation diversity of the neural dialogue models via soft embedding augmentation along with soft labels in this paper. Particularly, we select some key input tokens and fuse their embeddings together with embeddings from their semantic-neighbor tokens. The new embeddings serve as the input of the model to replace the original one. Besides, soft labels are used in loss calculation, resulting in multi-target supervision for a given input. Our experimental results on two datasets illustrate that our proposed method is capable of generating more diverse responses than raw models while remains a similar n-gram accuracy that ensures the quality of generated responses.


SLUA: A Super Lightweight Unsupervised Word Alignment Model via Cross-Lingual Contrastive Learning

arXiv.org Artificial Intelligence

Word alignment is essential for the down-streaming cross-lingual language understanding and generation tasks. Recently, the performance of the neural word alignment models has exceeded that of statistical models. However, they heavily rely on sophisticated translation models. In this study, we propose a super lightweight unsupervised word alignment (SLUA) model, in which bidirectional symmetric attention trained with a contrastive learning objective is introduced, and an agreement loss is employed to bind the attention maps, such that the alignments follow mirror-like symmetry hypothesis. Experimental results on several public benchmarks demonstrate that our model achieves competitive, if not better, performance compared to the state of the art in word alignment while significantly reducing the training and decoding time on average. Further ablation analysis and case studies show the superiority of our proposed SLUA. Notably, we recognize our model as a pioneer attempt to unify bilingual word embedding and word alignments. Encouragingly, our approach achieves 16.4x speedup against GIZA++, and 50x parameter compression} compared with the Transformer-based alignment methods. We will release our code to facilitate the community.


SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling

arXiv.org Artificial Intelligence

Slot filling and intent detection are two main tasks in spoken language understanding (SLU) system. In this paper, we propose a novel non-autoregressive model named SlotRefine for joint intent detection and slot filling. Besides, we design a novel two-pass iteration mechanism to handle the uncoordinated slots problem caused by conditional independence of non-autoregressive model. Experiments demonstrate that our model significantly outperforms previous models in slot filling task, while considerably speeding up the decoding (up to X 10.77). In-depth analyses show that 1) pretraining schemes could further enhance our model; 2) two-pass mechanism indeed remedy the uncoordinated slots.


Sample and Computationally Efficient Simulation Metamodeling in High Dimensions

arXiv.org Machine Learning

Stochastic kriging has been widely employed for simulation metamodeling to predict the response surface of a complex simulation model. However, its use is limited to cases where the design space is low-dimensional, because the number of design points required for stochastic kriging to produce accurate prediction, in general, grows exponentially in the dimension of the design space. The large sample size results in both a prohibitive sample cost for running the simulation model and a severe computational challenge due to the need of inverting large covariance matrices. Based on tensor Markov kernels and sparse grid experimental designs, we develop a novel methodology that dramatically alleviates the curse of dimensionality. We show that the sample complexity of the proposed methodology grows very mildly in the dimension, even under model misspecification. We also develop fast algorithms that compute stochastic kriging in its exact form without any approximation schemes. We demonstrate via extensive numerical experiments that our methodology can handle problems with a design space of hundreds of dimensions, improving both prediction accuracy and computational efficiency by orders of magnitude relative to typical alternative methods in practice.


Fault Tolerant Free Gait and Footstep Planning for Hexapod Robot Based on Monte-Carlo Tree

arXiv.org Artificial Intelligence

These authors contributed equally to this work. Abstract--Legged robots can pass through complex field environments by selecting gaits and discrete footholds carefully. Traditional methods plan gait and foothold separately and treat them as the single-step optimal process. However, such processing causes its poor passability in a sparse foothold environment. This paper novelly proposes a coordinative planning method for hexapod robots that regards the planning of gait and foothold as a sequence optimization problem with the consideration of dealing with the harshness of the environment as leg fault. The Monte Carlo tree search algorithm(MCTS) is used to optimize the entire sequence. Two methods, FastMCTS, and SlidingMCTS are proposed to solve some defeats of the standard MCTS applicating in the field of legged robot planning. The proposed planning algorithm combines the fault-tolerant gait method to improve the passability of the algorithm. For rule-based method, when walking in complicated terrain, which leads them to execute motor tasks a periodic gait, assuming that all footsteps are valid, legged on fields such as field rescue and planetary exploration in robots move forward in a fixed swing sequence, which is the future. The hexapod robots that have higher stability usually taken as 3+3 tripod gait, 4+2 quadruped gait or 5+1 and superior load capacity than biped robots and quadruped wave gait for hexapod robots[7]. Because these gaits are robots are widely used[1][2][3].


Overcoming the Curse of Dimensionality in Density Estimation with Mixed Sobolev GANs

arXiv.org Machine Learning

We propose a novel GAN framework for non-parametric density estimation with high-dimensional data. This framework is based on a novel density estimator, called the hyperbolic cross density estimator, which enjoys nice convergence properties in the mixed Sobolev spaces. As modifications of the usual Sobolev spaces, the mixed Sobolev spaces are more suitable for describing high-dimensional density functions. We prove that, unlike other existing approaches, the proposed GAN framework does not suffer the curse of dimensionality and can achieve the optimal convergence rate of $O_p(n^{-1/2})$, with $n$ data points in an arbitrary fixed dimension. We also study the universality of GANs in terms of the existence of ReLU networks which can approximate the density functions in the mixed Sobolev spaces up to any accuracy level.