Goto

Collaborating Authors

 Di, Xuan


SafeAug: Safety-Critical Driving Data Augmentation from Naturalistic Datasets

arXiv.org Artificial Intelligence

Safety-critical driving data is crucial for developing safe and trustworthy self-driving algorithms. Due to the scarcity of safety-critical data in naturalistic datasets, current approaches primarily utilize simulated or artificially generated images. However, there remains a gap in authenticity between these generated images and naturalistic ones. We propose a novel framework to augment the safety-critical driving data from the naturalistic dataset to address this issue. In this framework, we first detect vehicles using YOLOv5, followed by depth estimation and 3D transformation to simulate vehicle proximity and critical driving scenarios better. This allows for targeted modification of vehicle dynamics data to reflect potentially hazardous situations. Compared to the simulated or artificially generated data, our augmentation methods can generate safety-critical driving data with minimal compromise on image authenticity. Experiments using KITTI datasets demonstrate that a downstream self-driving algorithm trained on this augmented dataset performs superiorly compared to the baselines, which include SMOGN and importance sampling.


diffIRM: A Diffusion-Augmented Invariant Risk Minimization Framework for Spatiotemporal Prediction over Graphs

arXiv.org Artificial Intelligence

Spatiotemporal prediction over graphs (STPG) is challenging, because real-world data suffers from the Out-of-Distribution (OOD) generalization problem, where test data follow different distributions from training ones. To address this issue, Invariant Risk Minimization (IRM) has emerged as a promising approach for learning invariant representations across different environments. However, IRM and its variants are originally designed for Euclidean data like images, and may not generalize well to graph-structure data such as spatiotemporal graphs due to spatial correlations in graphs. To overcome the challenge posed by graph-structure data, the existing graph OOD methods adhere to the principles of invariance existence, or environment diversity. However, there is little research that combines both principles in the STPG problem. A combination of the two is crucial for efficiently distinguishing between invariant features and spurious ones. In this study, we fill in this research gap and propose a diffusion-augmented invariant risk minimization (diffIRM) framework that combines these two principles for the STPG problem. Our diffIRM contains two processes: i) data augmentation and ii) invariant learning. In the data augmentation process, a causal mask generator identifies causal features and a graph-based diffusion model acts as an environment augmentor to generate augmented spatiotemporal graph data. In the invariant learning process, an invariance penalty is designed using the augmented data, and then serves as a regularizer for training the spatiotemporal prediction model. The real-world experiment uses three human mobility datasets, i.e. SafeGraph, PeMS04, and PeMS08. Our proposed diffIRM outperforms baselines.


AI-Powered Urban Transportation Digital Twin: Methods and Applications

arXiv.org Artificial Intelligence

We present a survey paper on methods and applications of digital twins (DT) for urban traffic management. While the majority of studies on the DT focus on its "eyes," which is the emerging sensing and perception like object detection and tracking, what really distinguishes the DT from a traditional simulator lies in its ``brain," the prediction and decision making capabilities of extracting patterns and making informed decisions from what has been seen and perceived. In order to add values to urban transportation management, DTs need to be powered by artificial intelligence and complement with low-latency high-bandwidth sensing and networking technologies. We will first review the DT pipeline leveraging cyberphysical systems and propose our DT architecture deployed on a real-world testbed in New York City. This survey paper can be a pointer to help researchers and practitioners identify challenges and opportunities for the development of DTs; a bridge to initiate conversations across disciplines; and a road map to exploiting potentials of DTs for diverse urban transportation applications.


Causal Adjacency Learning for Spatiotemporal Prediction Over Graphs

arXiv.org Machine Learning

Spatiotemporal prediction over graphs (STPG) is crucial for transportation systems. In existing STPG models, an adjacency matrix is an important component that captures the relations among nodes over graphs. However, most studies calculate the adjacency matrix by directly memorizing the data, such as distance- and correlation-based matrices. These adjacency matrices do not consider potential pattern shift for the test data, and may result in suboptimal performance if the test data has a different distribution from the training one. This issue is known as the Out-of-Distribution generalization problem. To address this issue, in this paper we propose a Causal Adjacency Learning (CAL) method to discover causal relations over graphs. The learned causal adjacency matrix is evaluated on a downstream spatiotemporal prediction task using real-world graph data. Results demonstrate that our proposed adjacency matrix can capture the causal relations, and using our learned adjacency matrix can enhance prediction performance on the OOD test data, even though causal learning is not conducted in the downstream task.


From Twitter to Reasoner: Understand Mobility Travel Modes and Sentiment Using Large Language Models

arXiv.org Artificial Intelligence

Social media has become an important platform for people to express their opinions towards transportation services and infrastructure, which holds the potential for researchers to gain a deeper understanding of individuals' travel choices, for transportation operators to improve service quality, and for policymakers to regulate mobility services. A significant challenge, however, lies in the unstructured nature of social media data. In other words, textual data like social media is not labeled, and large-scale manual annotations are cost-prohibitive. In this study, we introduce a novel methodological framework utilizing Large Language Models (LLMs) to infer the mentioned travel modes from social media posts, and reason people's attitudes toward the associated travel mode, without the need for manual annotation. We compare different LLMs along with various prompting engineering methods in light of human assessment and LLM verification. We find that most social media posts manifest negative rather than positive sentiments. We thus identify the contributing factors to these negative posts and, accordingly, propose recommendations to traffic operators and policymakers.


A Single Online Agent Can Efficiently Learn Mean Field Games

arXiv.org Artificial Intelligence

Mean field games (MFGs) are a promising framework for modeling the behavior of large-population systems. However, solving MFGs can be challenging due to the coupling of forward population evolution and backward agent dynamics. Typically, obtaining mean field Nash equilibria (MFNE) involves an iterative approach where the forward and backward processes are solved alternately, known as fixed-point iteration (FPI). This method requires fully observed population propagation and agent dynamics over the entire spatial domain, which could be impractical in some real-world scenarios. To overcome this limitation, this paper introduces a novel online single-agent model-free learning scheme, which enables a single agent to learn MFNE using online samples, without prior knowledge of the state-action space, reward function, or transition dynamics. Specifically, the agent updates its policy through the value function (Q), while simultaneously evaluating the mean field state (M), using the same batch of observations. We develop two variants of this learning scheme: off-policy and on-policy QM iteration. We prove that they efficiently approximate FPI, and a sample complexity guarantee is provided. The efficacy of our methods is confirmed by numerical experiments.


Learn to Tour: Operator Design For Solution Feasibility Mapping in Pickup-and-delivery Traveling Salesman Problem

arXiv.org Artificial Intelligence

This paper aims to develop a learning method for a special class of traveling salesman problems (TSP), namely, the pickup-and-delivery TSP (PDTSP), which finds the shortest tour along a sequence of one-to-one pickup-and-delivery nodes. One-to-one here means that the transported people or goods are associated with designated pairs of pickup and delivery nodes, in contrast to that indistinguishable goods can be delivered to any nodes. In PDTSP, precedence constraints need to be satisfied that each pickup node must be visited before its corresponding delivery node. Classic operations research (OR) algorithms for PDTSP are difficult to scale to large-sized problems. Recently, reinforcement learning (RL) has been applied to TSPs. The basic idea is to explore and evaluate visiting sequences in a solution space. However, this approach could be less computationally efficient, as it has to potentially evaluate many infeasible solutions of which precedence constraints are violated. To restrict solution search within a feasible space, we utilize operators that always map one feasible solution to another, without spending time exploring the infeasible solution space. Such operators are evaluated and selected as policies to solve PDTSPs in an RL framework. We make a comparison of our method and baselines, including classic OR algorithms and existing learning methods. Results show that our approach can find tours shorter than baselines.


Physics-Informed Deep Learning For Traffic State Estimation: A Survey and the Outlook

arXiv.org Artificial Intelligence

For its robust predictive power (compared to pure physics-based models) and sample-efficient training (compared to pure deep learning models), physics-informed deep learning (PIDL), a paradigm hybridizing physics-based models and deep neural networks (DNN), has been booming in science and engineering fields. One key challenge of applying PIDL to various domains and problems lies in the design of a computational graph that integrates physics and DNNs. In other words, how physics are encoded into DNNs and how the physics and data components are represented. In this paper, we provide a variety of architecture designs of PIDL computational graphs and how these structures are customized to traffic state estimation (TSE), a central problem in transportation engineering. When observation data, problem type, and goal vary, we demonstrate potential architectures of PIDL computational graphs and compare these variants using the same real-world dataset.


CVLight: Deep Reinforcement Learning for Adaptive Traffic Signal Control with Connected Vehicles

arXiv.org Artificial Intelligence

This paper develops a reinforcement learning (RL) scheme for adaptive traffic signal control (ATSC), called "CVLight", that leverages data collected only from connected vehicles (CV). Seven types of RL models are proposed within this scheme that contain various state and reward representations, including incorporation of CV delay and green light duration into state and the usage of CV delay as reward. To further incorporate information of both CV and non-CV into CVLight, an algorithm based on actor-critic, A2C-Full, is proposed where both CV and non-CV information is used to train the critic network, while only CV information is used to update the policy network and execute optimal signal timing. These models are compared at an isolated intersection under various CV market penetration rates. A full model with the best performance (i.e., minimum average travel delay per vehicle) is then selected and applied to compare with state-of-the-art benchmarks under different levels of traffic demands, turning proportions, and dynamic traffic demands, respectively. Two case studies are performed on an isolated intersection and a corridor with three consecutive intersections located in Manhattan, New York, to further demonstrate the effectiveness of the proposed algorithm under real-world scenarios. Compared to other baseline models that use all vehicle information, the trained CVLight agent can efficiently control multiple intersections solely based on CV data and can achieve a similar or even greater performance when the CV penetration rate is no less than 20%.


A Survey on Autonomous Vehicle Control in the Era of Mixed-Autonomy: From Physics-Based to AI-Guided Driving Policy Learning

arXiv.org Artificial Intelligence

This paper serves as an introduction and overview of the potentially useful models and methodologies from artificial intelligence (AI) into the field of transportation engineering for autonomous vehicle (AV) control in the era of mixed autonomy. We will discuss state-of-the-art applications of AI-guided methods, identify opportunities and obstacles, raise open questions, and help suggest the building blocks and areas where AI could play a role in mixed autonomy. We divide the stage of autonomous vehicle (AV) deployment into four phases: the pure HVs, the HV-dominated, the AVdominated, and the pure AVs. This paper is primarily focused on the latter three phases. It is the first-of-its-kind survey paper to comprehensively review literature in both transportation engineering and AI for mixed traffic modeling. Models used for each phase are summarized, encompassing game theory, deep (reinforcement) learning, and imitation learning. While reviewing the methodologies, we primarily focus on the following research questions: (1) What scalable driving policies are to control a large number of AVs in mixed traffic comprised of human drivers and uncontrollable AVs? (2) How do we estimate human driver behaviors? (3) How should the driving behavior of uncontrollable AVs be modeled in the environment? (4) How are the interactions between human drivers and autonomous vehicles characterized? Hopefully this paper will not only inspire our transportation community to rethink the conventional models that are developed in the data-shortage era, but also reach out to other disciplines, in particular robotics and machine learning, to join forces towards creating a safe and efficient mixed traffic ecosystem.